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Introduction: Several recent announcements of: i) 

the discovery of glycine on the comet 81P/Wild-2/P [1, 

2]; ii) the successful shock synthesis of prebiotic com-

pounds from liquid targets [3] and, iii) the results of 

molecular dynamics simulations demonstrating that 

amino acids could be created via shock synthesis of 

ices [4], have prompted a sequence of impact experi-

ments using a light gas gun (LGG) at the Univ. of Kent 

[5]. The purpose of these experiments is to attempt to 

synthesise organic compounds from a mixture of sim-

ple ices (CO2, NH3 and H2O).  

NH3 compounds, CO2 and H2O ices in the Sat-

urnian system: According to observations made by 

Cassini’s Visual and Infrared Mapping Spectrometer 

(VIMS) instrument, Enceladus’ surface is composed 

mostly of nearly pure water ice except near its south 

pole, where there are light organics, CO2, and amor-

phous and crystalline water ice. The absorptions near 

3.44 and 3.53 µm could be due to short-chain organics, 

but other features in the spectrum are still unidentified 

[5]. Remote IR acquired new high-resolution spectra of 

Iapetus, Tethys, Enceladus and Rhea that show the 

absorption feature of ammonia hydrate [6]. It thus 

seems probable that there are conditions on the sur-

faces of bodies in the Saturnian system where ammo-

nium compounds, CO2 and water ice co-exist in a solid 

form. Impact of a bolide traveling with sufficiently 

high velocity onto such a surface, should impart 

enough energy to promote shock synthesis of more 

complex organic compounds, including amino acids, 

from these ices. 

Laboratory experiments: Targets were prepared 

as follows: CO2 ice (commercially purchased from 

BOC Ltd., stored in a freezer at a temperature of -130 

°C) was repeatedly passed through a clean domestic ice 

crusher until the fragments’ largest dimension was no 

bigger than ~3 mm. The crushed CO2 ice was then 

placed in a lidded (135 mm x 95 mm x 110 mm) poly-

styrene box. 150 ml of previously chilled (-40° C) 

aqueous ammonia solution (Sigma-Aldrich, Cat. # 32, 

014-5) was added, and the mix was shaken until the 

ammonia started to freeze, creating a well-mixed solid 

target in the box. The box was then returned to the low 

temperature freezer and cooled to -130° C.  

The targets remained in the freezer until the LGG 

was ready to fire, and then they were removed and 

placed in the target chamber which was then evacuated 

to ~30 mbar. The time taken from removal from the 

freezer to impact was approx. 20 minutes. In order to 

reduce target contamination from carbon-bearing gun 

debris during the shot, the (impact) target was wrapped 

in a layer of cling film (~10 µm thick). A blank control 

target was also placed in the target chamber (out of the 

direct line of impact) and left uncovered for compari-

tive analysis. 
Table 1. LGG shot parameters. 

Shot ID Projectile  Dens. 

(g cm-3) 

Dia. 

(mm) 

Vel. (km 

s-1) 

G161009#1 SS 304 8.00 1.5 5.75 

 

Preparation of residues: After the shot (Table 1), 

the impacted target and the control target were re-

moved and placed into a vented oven at a temperature 

of approximately 90° C, to speed the sublima-

tion/vapourisation of the remnant CO2 ice and liquid 

NH3 and also to decompose the ammonium bicarbonate 

which is inevitably produced via the reaction: 

NH3+H2O+CO2→ NH4HCO3. The water is captured by 

atmospheric condensation and from the ammonia solu-

tion itself. Both targets were left for 12 hours, then the 

fine powdery residue (coating the bottom and sides of 

the box) was dissolved in 20 ml of HPLC water (HPLC 

gradient grade, Fisher Scientific) and filtered through 

grade 1 filter paper into a washed, sealable, glass con-

tainer and the water left to evaporate in clean air. 

Residue analysis: Residues were analysed with a 

Jobin Yvon µ-Raman HR640 spectrometer (λlaser = 

632.8 nm) and a FTIR spectrometer (Nicolet 380 FT-

IR) 

 

 
Figure 1: Example of residue grain (on gold substrate) 

from shot G161009#1 
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Fig. 1 shows an example of a grain found after washing 

and filtering the residue. As can be seen, the crystal is 

irregular and appears to contain smaller (unknown) 

grains within. It should be noted that several such crys-

tals were found in the residue from G161009#1 but 

were NOT detected in the control residue. 

 
Figure 2. Raman spectrum of crystal from Fig. 1 (upper 

line-black), pure glycine (middle line-pink), pure am-

monium bicarbonate (bottom line-blue). 
 

Table 2: Raman line wavenumbers and relative intensi-

ties for pure glycine and the unknown shot residue. 

Compound Raman lines and intensity
†
 

Pure  

glycine (on 

glass) 

504(s), 562(w) ,610(w), 689(m), 

900(vs), 934(w), 1052(m), 1132(m), 

1161(w), 1327(s), 1340(vs), 1400(m,b),  

1441(s), 1505(vw), 1584(w), 1677(w), 

2966(s), 3003(s) 

Residue (on 

gold) 

505(m), 602 (w, b), 689 (vw), 871(w), 

901(vs), 981 (vw), 1128 (vw), 1356(w), 

1395(vw), 1407(w), 1475(vs), 

1512(vw), 1600 (w/vw), 1627(w/m) 
†(vs): very strong, (s): strong, (m): medium, (w): weak, (vw): 

very weak, (b): broad. 

 

From Fig. 2 (and Table 2) it can be seen that there are 

some matching Raman lines between the residue and 

pure glycine, but there is also a broad underlying fluo-

rescence in the residue spectrum which may be obscur-

ing some of the less intense lines. There is, however, a 

better match with the glycine spectra than with the 

ammonium bicarbonate spectra – which is the most 

likely contamination. 

FTIR analysis was performed by scraping the 

residue into a pile using a clean spatula and placing it 

on the diamond anvil stage of the spectrometer. This 

analysis technique is potentially more ‘destructive’ of 

our sample than in-situ Raman spectroscopy, simply 

due to the loss of residue during transfer. Additionally, 

the method is ‘non-selective’ and will give an FTIR 

spectrum which is a summation of all the compounds 

within the residue. Unfortunately, the very small 

amount of control target residue made it impossible to 

obtain a FTIR signal above the background. 

 

 
Figure 3. FTIR spectra of residue from G161009#1 

(central curve-black). Also shown are the FTIR spectra 

of pure glycine (upper curve-pink) and ammonium 

bicarbonate (lower curve-blue). 

 

The FTIR spectra are difficult to accurately interpret, 

but do seem to suggest a mixture of ammonium bicar-

bonate and other organic matter (not excluding gly-

cine). The small quantity of residue produced (<1 mg) 

makes a more accurate determination difficult using 

our current equipment. 

Conclusions: Although more sensitive analytical 

testing of this type of shock residue is required (and 

this is ongoing), there are tantalising indications that 

we have synthesized organic compounds (including, 

possibly, glycine) by shock impacting a simple ice mix-

ture. This could provide a creation mechanism for pre-

biotic compounds in the outer solar system. Further 

experiments are currently underway and time has been 

obtained on a NMR spectrometer for further analysis. 
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