1,033 research outputs found

    Intestinal RORrt-generated Th17 cells control type 2 diabetes: A first antidiabetic target identified from the host to microbiota crosstalk

    Get PDF
    The recent discovery of the role played by gut microbiota on the control of metabolic disease opens novel routes for the identification of the causes of type 2 diabetes and obesity. This paradigm could explain the infiltration, by innate and adaptive immune cells, of the adipose tissue, liver, and islets of Langerhans which is responsible for the metabolic inflammation state that leads to impaired insulin action and secretion, and therefore, type 2 diabetes. The identification of the causal role of circulating lipopolysaccharides LPS and peptidoglycans in the development of metabolic inflammation, due to an increased intestinal permeability, led to the leaky gut hypothesis. In addition, whole live bacteria were found in metabolic tissues establishing a tissue microbiota which upon a fat-enriched diet becomes dysbiotic. The process of intestinal bacterial translocation was responsible for the onset of a leaky gut causal to the disease. The translocation of selective sets of intestinal bacteria to the blood could be identified. These blood bacterial 16SrRNA-DNA sequences are considered as biomarkers of the bacterial translocation process. An increased of the corresponding bacterial DNA concentration was predicting the occurrence of type 2 diabetes. Associated to the dysbiotic microbiota translocation, an impaired intestinal immune defense was identified as a cause of the selective leaky gut. The change in small intestine mucosal microbiota induced by a fat-enriched diet reduces the number of IL17-secreting CD4 T cells within the lamina propria of the intestine. This loss of IL17-secreting CD4 T cells is the consequence of an impaired capacity of intestinal antigen presenting cells to activate and trigger the expression of RORgt and the production of IL17 by CD4 T cells. Altogether, an impaired intestinal immune defense, notably the reduced differentiation of RORgt expressing IL17-producing CD4 T cells, favors the onset of a leaky gut leading to the translocation of bacterial factors and live bacteria towards tissues triggering metabolic inflammation; insulin resistance and type 2 diabetes. Hence, the triggering of intestinal defense surrounding RORgt pathway now appears as a potential target mechanism for the control of type 2 diabetes

    Role of Central Nervous System Glucagon-Like Peptide-1 Receptors in Enteric Glucose Sensing

    Get PDF
    OBJECTIVE—Ingested glucose is detected by specialized sensors in the enteric/hepatoportal vein, which send neural signals to the brain, which in turn regulates key peripheral tissues. Hence, impairment in the control of enteric-neural glucose sensing could contribute to disordered glucose homeostasis. The aim of this study was to determine the cells in the brain targeted by the activation of the enteric glucose-sensing system

    Brain Glucagon-Like Peptide-1 Regulates Arterial Blood Flow, Heart Rate, and Insulin Sensitivity

    Get PDF
    OBJECTIVE— To ascertain the importance and mechanisms underlying the role of brain glucagon-like peptide (GLP)-1 in the control of metabolic and cardiovascular function. GLP-1 is a gut hormone secreted in response to oral glucose absorption that regulates glucose metabolism and cardiovascular function. GLP-1 is also produced in the brain, where its contribution to central regulation of metabolic and cardiovascular homeostasis remains incompletely understood

    PPARγ ligands switched high fat diet-induced macrophage M2b polarization toward M2a thereby improving intestinal Candida elimination.

    Get PDF
    International audienceObesity is associated with a chronic low-grade inflammation that predisposes to insulin resistance and the development of type 2 diabetes. In this metabolic context, gastrointestinal (GI) candidiasis is common. We recently demonstrated that the PPARγ ligand rosiglitazone promotes the clearance of Candida albicans through the activation of alternative M2 macrophage polarization. Here, we evaluated the impact of high fat diet (HFD)-induced obesity and the effect of rosiglitazone (PPARγ ligand) or WY14643 (PPARα ligand) both on the phenotypic M1/M2 polarization of peritoneal and cecal tissue macrophages and on the outcome of GI candidiasis. We demonstrated that the peritoneal macrophages and the cell types present in the cecal tissue from HF fed mice present a M2b polarization (TNF-α(high), IL-10(high), MR, Dectin-1). Interestingly, rosiglitazone induces a phenotypic M2b-to-M2a (TNF-α(low), IL-10(low), MR(high), Dectin-1(high)) switch of peritoneal macrophages and of the cells present in the cecal tissue. The incapacity of WY14643 to switch this polarization toward M2a state, strongly suggests the specific involvement of PPARγ in this mechanism. We showed that in insulin resistant mice, M2b polarization of macrophages present on the site of infection is associated with an increased susceptibility to GI candidiasis, whereas M2a polarization after rosiglitazone treatment favours the GI fungal elimination independently of reduced blood glucose. In conclusion, our data demonstrate a dual benefit of PPARγ ligands because they promote mucosal defence mechanisms against GI candidiasis through M2a macrophage polarization while regulating blood glucose level

    Insulin resistance in mice lacking neuronal nitric oxide synthase is related to an alpha-adrenergic mechanism.

    Get PDF
    BACKGROUND: nitric oxide (NO) plays an important role in the regulation of cardiovascular and glucose homeostasis. Mice lacking the gene encoding the neuronal isoform of nitric oxide synthase (nNOS) are insulin-resistant, but the underlying mechanism is unknown. nNOS is expressed in skeletal muscle tissue where it may regulate glucose uptake. Alternatively, nNOS driven NO synthesis may facilitate skeletal muscle perfusion and substrate delivery. Finally, nNOS dependent NO in the central nervous system may facilitate glucose disposal by decreasing sympathetic nerve activity. METHODS: in nNOS null and control mice, we studied whole body glucose uptake and skeletal muscle blood flow during hyperinsulinaemic clamp studies in vivo and glucose uptake in skeletal muscle preparations in vitro. We also examined the effects of alpha-adrenergic blockade (phentolamine) on glucose uptake during the clamp studies. RESULTS: as expected, the glucose infusion rate during clamping was roughly 15 percent lower in nNOS null than in control mice (89 (17) vs 101 (12) [-22 to -2]). Insulin stimulation of muscle blood flow in vivo, and intrinsic muscle glucose uptake in vitro, were comparable in the two groups. Phentolamine, which had no effect in the wild-type mice, normalised the insulin sensitivity in the mice lacking the nNOS gene. CONCLUSIONS: insulin resistance in nNOS null mice was not related to defective insulin stimulation of skeletal muscle perfusion and substrate delivery or insulin signaling in the skeletal muscle cell, but to a sympathetic alpha-adrenergic mechanism

    Shaping the Gut Microbiota by Breastfeeding: The Gateway to Allergy Prevention?

    Get PDF
    Evidence is accumulating that demonstrates the importance of the gut microbiota in health and diseases such as allergy. Recent studies emphasize the importance of the “window of opportunity” in early life, during which interventions altering the gut microbiota induce long-term effects. The neonate's gut microbiota composition and metabolism could therefore play an essential role in allergic disease risk. Breastfeeding shapes the gut microbiota in early life, both directly by exposure of the neonate to the milk microbiota and indirectly, via maternal milk factors that affect bacterial growth and metabolism such as human milk oligosaccharides, secretory IgA, and anti-microbial factors. The potential of breastmilk to modulate the offspring's early gut microbiota is a promising tool for allergy prevention. Here, we will review the existing evidence demonstrating the impact of breastfeeding on shaping the neonate's gut microbiota and highlight the potential of this strategy for allergy prevention
    corecore