29 research outputs found

    The CCL3 Family of Chemokines and Innate Immunity Cooperate In Vivo in the Eradication of an Established Lymphoma Xenograft by Rituximab

    Get PDF
    The therapeutic mAb rituximab induced the expression of the CCL3 and CCL4 chemokines in the human lymphoma line BJAB following binding to the CD20 Ag. Induction of CCL3/4 in vitro was specific, was observed in several cell lines and freshly isolated lymphoma samples and also took place at the protein level in vitro and in vivo. To investigate the role of these beta-chemokines in the mechanism of action of rituximab, we synthesized a N-terminally truncated CCL3 molecule CCL3(11\u201370), which had antagonist activity on chemotaxis mediated by either CCL3 or BJAB supernatant. We also set up an established s.c. BJAB tumor model in athymic mice. Rituximab, given weekly after tumors had reached 250 mm2, led to complete disappearance of the lymphoma within 2\u20133 wk. Treatment of mice with cobra venom factor showed that complement was required for rituximab therapeutic activity. Treatment of BJAB tumor bearing mice every 2 days with the CCL3(11\u201370) antagonist, starting 1 wk before rituximab treatment, had no effect on tumor growth by itself, but completely inhibited the therapeutic activity of the Ab. To determine whether CCL3 acts through recruitment/activation of immune cells, we specifically depleted NK cells, polymorphonuclear cells, and macrophages using mAbs, clodronate treatment, or Rag2\u2013/\u2013c\u2013/\u2013 mice. The data demonstrated that these different cell populations are involved in BJAB tumor eradication. We propose that rituximab rapidly activates complement and induces beta-chemokines in vivo, which in turn activate the innate immunity network required for efficient eradication of the bulky BJAB tumor

    Impact of pre-analytical and analytical variables associated with sample preparation on flow cytometric stainings obtained with EuroFlow panels

    Get PDF
    Objective interpretation of FC results may still be hampered by limited technical standardization. The EuroFlow consortium conducted a series of experiments to determine the impact of different variables on the relative distribution and the median fluorescence intensity (MFI) of markers stained on different cell populations, from both healthy donors and patients’ samples with distinct hematological malignancies. The use of different anticoagulants; the time interval between sample collection, preparation, and acquisition; pH of washing buffers; and the use of cell surface membrane-only (SM) vs. cell surface plus intracytoplasmic (SM+CY) staining protocols, were evaluated. Our results showed that only monocytes were represented at higher percentages in EDTA- vs. heparin-anticoagulated samples. Application of SM or SM+CY protocols resulted in slight differences in the percentage of neutrophils and debris determined only with particular antibody combinations. In turn, storage of samples for 24 h at RT was associated with greater percentage of debris and cell doublets when the plasma cell disorder panel was used. Furthermore, 24 h storage of stained cells at RT was selectively detrimental for MFI levels of CD19 and CD45 on mature B- and T-cells (but not on leukemic blasts, clonal B- and plasma cells, neutrophils, and NK cells). The obtained results showed that the variables evaluated might need to be tailored for sample and cell type(s) as well as to the specific markers compared; however, defining of well-balanced boundaries for storage time, staining-to-acquisition delay, and pH of washing buffer would be a valid recommendation for most applications and circumstances described herein.This research was funded by the EuroFlow Consortium which received support from the FP6-2004-LIFESCIHEALTH-5 program of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP). The EuroFlow Consortium is part of the European Scientific Foundation for Hemato-Oncology (ESLHO), a Scientific Working Group (SWG) of the European Hematology Association (EHA); the grant of the Polish National Center for Research and Development (no. STRATEGMED3/304586/5/NCBR/2017 Person ALL); and internal grant of the Medical University of Silesia (no. PCN-1-050/K/0/K); the grant of CIBER-ONC, Instituto de Salud Carlos III, Ministerio de Economía y Competitividad, Madrid, Spain and FONDOS FEDER (no. CB16/12/00400)

    Minimal residual disease assessment in B-cell precursor acute lymphoblastic leukemia by semi-automated identification of normal hematopoietic cells:A EuroFlow study

    Get PDF
    Presence of minimal residual disease (MRD), detected by flow cytometry, is an important prognostic biomarker in the management of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, data-analysis remains mainly expert-dependent. In this study, we designed and validated an Automated Gating &amp; Identification (AGI) tool for MRD analysis in BCP-ALL patients using the two tubes of the EuroFlow 8-color MRD panel. The accuracy, repeatability, and reproducibility of the AGI tool was validated in a multicenter study using bone marrow follow-up samples from 174 BCP-ALL patients, stained with the EuroFlow BCP-ALL MRD panel. In these patients, MRD was assessed both by manual analysis and by AGI tool supported analysis. Comparison of MRD levels obtained between both approaches showed a concordance rate of 83%, with comparable concordances between MRD tubes (tube 1, 2 or both), treatment received (chemotherapy versus targeted therapy) and flow cytometers (FACSCanto versus FACSLyric). After review of discordant cases by additional experts, the concordance increased to 97%. Furthermore, the AGI tool showed excellent intra-expert concordance (100%) and good inter-expert concordance (90%). In addition to MRD levels, also percentages of normal cell populations showed excellent concordance between manual and AGI tool analysis. We conclude that the AGI tool may facilitate MRD analysis using the EuroFlow BCP-ALL MRD protocol and will contribute to a more standardized and objective MRD assessment. However, appropriate training is required for the correct analysis of MRD data.</p

    Flow cytometric minimal residual disease assessment in B-cell precursor acute lymphoblastic leukaemia patients treated with CD19-targeted therapies — a EuroFlow study

    Get PDF
    The standardized EuroFlow protocol, including CD19 as primary B-cell marker, enables highly sensitive and reliable minimal residual disease (MRD) assessment in B-cell precursor acute lymphoblastic leukaemia (BCP-ALL) patients treated with chemotherapy. We developed and validated an alternative gating strategy allowing reliable MRD analysis in BCP-ALL patients treated with CD19-targeting therapies. Concordant data were obtained in 92% of targeted therapy patients who remained CD19-positive, whereas this was 81% in patients that became (partially) CD19-negative. Nevertheless, in both groups median MRD values showed excellent correlation with the original MRD data, indicating that, despite higher interlaboratory variation, the overall MRD analysis was correct.The EuroFlow Consortium received support from the FP6-2004-LIFESCIHEALTH-5 programme of the European Commission (grant LSHB-CT-2006-018708) as Specific Targeted Research Project (STREP). The EuroFlow Consortium is part of the European Scientific Foundation for Hemato-Oncology (ESLHO), a Scientific Working Group (SWG) of the European Hematology Association (EHA). TS and LS were supported by a Scientific Grant from the Medical University of Silesia Nr. PCN-1-050/K/0/K

    Bone Marrow Stromal Cell Regeneration Profile in Treated B-Cell Precursor Acute Lymphoblastic Leukemia Patients:Association with MRD Status and Patient Outcome

    Get PDF
    SIMPLE SUMMARY: For the last 20 years, measurable residual disease (MRD) has proven to be a strong prognostic factor in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effects of therapy on the bone marrow (BM) microenvironment and their potential relationship with MRD and patient outcome still remain to be evaluated. Here, we show that mesenchymal stem cells (MSC) and endothelial cells (EC) are constantly present at relatively low frequencies in normal BM and in most follow-up BM samples from treated BCP-ALL patients. Of note, their levels are independent of the MRD status. From the prognostic point of view, an increased percentage of EC among stromal cells (EC plus MSC) at day +78 of therapy was associated with shorter disease free survival (DFS), independently of the MRD status both in childhood and in adult BCP-ALL. Thus, an abnormally high EC/MSC distribution at day +78 of therapy emerges as an adverse prognostic factor, independent of MRD in BCP-ALL. ABSTRACT: For the last two decades, measurable residual disease (MRD) has become one of the most powerful independent prognostic factors in B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, the effect of therapy on the bone marrow (BM) microenvironment and its potential relationship with the MRD status and disease free survival (DFS) still remain to be investigated. Here we analyzed the distribution of mesenchymal stem cells (MSC) and endothelial cells (EC) in the BM of treated BCP-ALL patients, and its relationship with the BM MRD status and patient outcome. For this purpose, the BM MRD status and EC/MSC regeneration profile were analyzed by multiparameter flow cytometry (MFC) in 16 control BM (10 children; 6 adults) and 1204 BM samples from 347 children and 100 adult BCP-ALL patients studied at diagnosis (129 children; 100 adults) and follow-up (824 childhood samples; 151 adult samples). Patients were grouped into a discovery cohort (116 pediatric BCP-ALL patients; 338 samples) and two validation cohorts (74 pediatric BCP-ALL, 211 samples; and 74 adult BCP-ALL patients; 134 samples). Stromal cells (i.e., EC and MSC) were detected at relatively low frequencies in all control BM (16/16; 100%) and in most BCP-ALL follow-up samples (874/975; 90%), while they were undetected in BCP-ALL BM at diagnosis. In control BM samples, the overall percentage of EC plus MSC was higher in children than adults (p = 0.011), but with a similar EC/MSC ratio in both groups. According to the MRD status similar frequencies of both types of BM stromal cells were detected in BCP-ALL BM studied at different time points during the follow-up. Univariate analysis (including all relevant prognostic factors together with the percentage of stromal cells) performed in the discovery cohort was used to select covariates for a multivariate Cox regression model for predicting patient DFS. Of note, an increased percentage of EC (>32%) within the BCP-ALL BM stromal cell compartment at day +78 of therapy emerged as an independent unfavorable prognostic factor for DFS in childhood BCP-ALL in the discovery cohort—hazard ratio (95% confidence interval) of 2.50 (1–9.66); p = 0.05—together with the BM MRD status (p = 0.031). Further investigation of the predictive value of the combination of these two variables (%EC within stromal cells and MRD status at day +78) allowed classification of BCP-ALL into three risk groups with median DFS of: 3.9, 3.1 and 1.1 years, respectively (p = 0.001). These results were confirmed in two validation cohorts of childhood BCP-ALL (n = 74) (p = 0.001) and adult BCP-ALL (n = 40) (p = 0.004) treated at different centers. In summary, our findings suggest that an imbalanced EC/MSC ratio in BM at day +78 of therapy is associated with a shorter DFS of BCP-ALL patients, independently of their MRD status. Further prospective studies are needed to better understand the pathogenic mechanisms involved

    Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia

    Get PDF
    A fully-standardized EuroFlow 8–color antibody panel and laboratory procedure was stepwise designed to measure minimal residual disease (MRD) in B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) patients with a sensitivity of £1025, comparable to real-time quantitative polymerase chain reaction (RQ-PCR)–based MRD detection via antigen-receptor rearrangements. Leukocyte markers and the corresponding antibodies and fluorochromes were selected based on their contribution in separating BCP-ALL cells from normal/regenerating BCP cells in multidimensional principal component analyses. After 5 multicenter design-test-evaluate-redesign phases with a total of 319 BCP-ALL patients at diagnosis, two 8-color antibody tubes were selected, which allowed separation between normal and malignant BCP cells in 99% of studied patients. These 2 tubes were tested with a new erythrocyte bulk-lysis protocol allowing acquisition of high cell numbers in 377 bone marrow follow-up samples of 178 BCP-ALL patients. Comparison with RQ-PCR–based MRD data showed a clear positive relation between the percentage concordant cases and the number of cells acquired. For those samples with >4 million cells acquired, concordant results were obtained in 93% of samples. Most discordances were clarified upon high-throughput sequencing of antigen-receptor rearrangements and blind multicenter reanalysis of flow cytometric data, resulting in an unprecedented concordance of 98% (97% for samples with MRD 98% of patients with sensitivities at least similar to RQ-PCR (£1025), if sufficient cells (>4 3 106, preferably more) are evaluated

    Flow cytometry for minimal residual disease testing in acute leukemia: opportunities and challenges

    No full text
    <p><b>Introduction</b>: Flow cytometric quantification of minimal residual disease (MRD) in acute leukemia (AL) represents an indispensable tool to guide modern therapeutic protocols toward a precision medicine approach, being a powerful predictor of the overall response to treatment. This review covers the most challenging aspects and developments of this method, aiming at supporting further its implementation in clinical practices.</p> <p><b>Area covered</b>: Flow cytometric MRD is based on the discrimination of leukemia cells from their physiological counterparts by the recognition of the leukemia-associated immunophenotypes. Technical and standardization advances along the last decades have been implemented allowing flow cytometric MRD to consolidate its role in modern therapeutic protocols for ALs. However, gaps in sensitivity and data interpretation are still present together with the need for further optimization of MRD-based clinical protocols. In this review, we critically analyze and discuss the most relevant and representative contributions in the field by accurate selection of the literature available in PubMed.</p> <p><b>Expert commentary</b>: Further research in flow cytometric MRD can bring this technology toward wider and consistent applications in multiple acute leukemia settings rendering this tool a future golden standard and providing clinicians with more reliable and accurate tools for clinical decisions.</p
    corecore