1,763 research outputs found

    Axiomatic foundations of quantum mechanics revisited: the case for systems

    Get PDF
    We present an axiomatization of non-relativistic Quantum Mechanics for a system with an arbitrary number of components. The interpretation of our system of axioms is realistic and objective. The EPR paradox and its relation with realism is discussed in this framework. It is shown that there is no contradiction between realism and recent experimental results.Comment: submitted to International Journal of Theoretical Physics, uses Latex, no figure

    Exact Philosophy of Space-Time

    Full text link
    Starting from Bunge's (1977) scientific ontology, we expose a materialistic relational theory of space-time, that carries out the program initiated by Leibniz, and provides a protophysical basis consistent with any rigorous formulation of General Relativity. Space-time is constructed from general concepts which are common to any consistent scientific theory and they are interpreted as emergent properties of the greatest assembly of things, namely, the world.Comment: 13 pages, 3 figures. Version compatible with the published one. arXiv admin note: substantial text overlap with arXiv:gr-qc/971006

    New remarks on the Cosmological Argument

    Get PDF
    We present a formal analysis of the Cosmological Argument in its two main forms: that due to Aquinas, and the revised version of the Kalam Cosmological Argument more recently advocated by William Lane Craig. We formulate these two arguments in such a way that each conclusion follows in first-order logic from the corresponding assumptions. Our analysis shows that the conclusion which follows for Aquinas is considerably weaker than what his aims demand. With formalizations that are logically valid in hand, we reinterpret the natural language versions of the premises and conclusions in terms of concepts of causality consistent with (and used in) recent work in cosmology done by physicists. In brief: the Kalam argument commits the fallacy of equivocation in a way that seems beyond repair; two of the premises adopted by Aquinas seem dubious when the terms `cause' and `causality' are interpreted in the context of contemporary empirical science. Thus, while there are no problems with whether the conclusions follow logically from their assumptions, the Kalam argument is not viable, and the Aquinas argument does not imply a caused origination of the universe. The assumptions of the latter are at best less than obvious relative to recent work in the sciences. We conclude with mention of a new argument that makes some positive modifications to an alternative variation on Aquinas by Le Poidevin, which nonetheless seems rather weak.Comment: 12 pages, accepted for publication in International Journal for Philosophy of Religio

    Parmenides reloaded

    Get PDF
    I argue for a four dimensional, non-dynamical view of space-time, where becoming is not an intrinsic property of reality. This view has many features in common with the Parmenidean conception of the universe. I discuss some recent objections to this position and I offer a comparison of the Parmenidean space-time with an interpretation of Heraclitus' thought that presents no major antagonism.Comment: 11 pages, accepted for publication in Foundations of Scienc

    Citizen Science 2.0 : Data Management Principles to Harness the Power of the Crowd

    Get PDF
    Citizen science refers to voluntary participation by the general public in scientific endeavors. Although citizen science has a long tradition, the rise of online communities and user-generated web content has the potential to greatly expand its scope and contributions. Citizens spread across a large area will collect more information than an individual researcher can. Because citizen scientists tend to make observations about areas they know well, data are likely to be very detailed. Although the potential for engaging citizen scientists is extensive, there are challenges as well. In this paper we consider one such challenge – creating an environment in which non-experts in a scientific domain can provide appropriate and accurate data regarding their observations. We describe the problem in the context of a research project that includes the development of a website to collect citizen-generated data on the distribution of plants and animals in a geographic region. We propose an approach that can improve the quantity and quality of data collected in such projects by organizing data using instance-based data structures. Potential implications of this approach are discussed and plans for future research to validate the design are described

    Kinematics and hydrodynamics of spinning particles

    Full text link
    In the first part (Sections 1 and 2) of this paper --starting from the Pauli current, in the ordinary tensorial language-- we obtain the decomposition of the non-relativistic field velocity into two orthogonal parts: (i) the "classical part, that is, the 3-velocity w = p/m OF the center-of-mass (CM), and (ii) the so-called "quantum" part, that is, the 3-velocity V of the motion IN the CM frame (namely, the internal "spin motion" or zitterbewegung). By inserting such a complete, composite expression of the velocity into the kinetic energy term of the non-relativistic classical (i.e., newtonian) lagrangian, we straightforwardly get the appearance of the so-called "quantum potential" associated, as it is known, with the Madelung fluid. This result carries further evidence that the quantum behaviour of micro-systems can be adirect consequence of the fundamental existence of spin. In the second part (Sections 3 and 4), we fix our attention on the total 3-velocity v = w + V, it being now necessary to pass to relativistic (classical) physics; and we show that the proper time entering the definition of the four-velocity v^mu for spinning particles has to be the proper time tau of the CM frame. Inserting the correct Lorentz factor into the definition of v^mu leads to completely new kinematical properties for v_mu v^mu. The important constraint p_mu v^mu = m, identically true for scalar particles, but just assumed a priori in all previous spinning particle theories, is herein derived in a self-consistent way.Comment: LaTeX file; needs kapproc.st

    Photodetachment study of the 1s3s4s ^4S resonance in He^-

    Get PDF
    A Feshbach resonance associated with the 1s3s4s ^{4}S state of He^{-} has been observed in the He(1s2s ^{3}S) + e^- (\epsilon s) partial photodetachment cross section. The residual He(1s2s ^{3}S) atoms were resonantly ionized and the resulting He^+ ions were detected in the presence of a small background. A collinear laser-ion beam apparatus was used to attain both high resolution and sensitivity. We measured a resonance energy E_r = 2.959 255(7) eV and a width \Gamma = 0.19(3) meV, in agreement with a recent calculation.Comment: LaTeX article, 4 pages, 3 figures, 21 reference

    Inconsistent boundaries

    Get PDF
    Research on this paper was supported by a grant from the Marsden Fund, Royal Society of New Zealand.Mereotopology is a theory of connected parts. The existence of boundaries, as parts of everyday objects, is basic to any such theory; but in classical mereotopology, there is a problem: if boundaries exist, then either distinct entities cannot be in contact, or else space is not topologically connected (Varzi in Noûs 31:26–58, 1997). In this paper we urge that this problem can be met with a paraconsistent mereotopology, and sketch the details of one such approach. The resulting theory focuses attention on the role of empty parts, in delivering a balanced and bounded metaphysics of naive space.PostprintPeer reviewe
    corecore