214 research outputs found
Recommended from our members
Measurement of RF surface efficiency at cryogenic temperatures using a resonant cavity
Exploiting the potential efficiency gain of a normal conducting rf accelerator operated at cryogenic temperatures requires careful preparation of the rf conducting surface. Experimental apparatus has been assembled to study the surface conductivity to rf currents at 425 MHz and 850 MHz through a temperature range from room temperature to 14 K. The apparatus is built around an open-ended coaxial cavity with the cavity tubular ends below the cutoff frequency at resonance. The center conductor in the coaxial cavity is the test sample, and the use of a dielectric stand-off for the center conductor precludes the need for an rf contact joint and facilitates sample changes. The rf testing is conducted under vacuum with low-power rf. A CTI-Cryogenics cryopump coldhead is used for cryogenic temperature cycling of the test cavity. A detailed description of the apparatus and measurement procedures are presented
Recommended from our members
Advances of the FRIB project
The Facility for Rare Isotope Beams (FRIB) Project has entered the phase of beam commissioning starting from the room-temperature front end and the superconducting linac segment of first 15 cryomodules. With the newly commissioned helium refrigeration system supplying 4.5K liquid helium to the quarter-wave resonators and solenoids, the FRIB accelerator team achieved the sectional key performance parameters as designed ahead of schedule accelerating heavy ion beams above 20MeV/u energy. Thus, FRIB accelerator becomes world's highest-energy heavy ion linear accelerator. We also validated machine protection and personnel protection systems that will be crucial to the next phase of commissioning. FRIB is on track towards a national user facility at the power frontier with a beam power two orders of magnitude higher than operating heavy-ion facilities. This paper summarizes the status of accelerator design, technology development, construction, commissioning as well as path to operations and upgrades
Reprogrammed Transcriptome in Rhesus-Bovine Interspecies Somatic Cell Nuclear Transfer Embryos
Global activation of the embryonic genome (EGA), one of the most critical steps in early mammalian embryo development, is recognized as the time when interspecies somatic cell nuclear transfer (iSCNT) embryos fail to thrive.In this study, we analyzed the EGA-related transcriptome of rhesus-bovine iSCNT 8- to 16-cell embryos and dissected the reprogramming process in terms of embryonic gene activation, somatic gene silencing, and maternal RNA degradation. Compared with fibroblast donor cells, two thousand and seven genes were activated in iSCNT embryos, one quarter of them reaching expression levels comparable to those found in in vitro fertilized (IVF) rhesus embryos. This suggested that EGA in iSCNT embryos had partially recapitulated rhesus embryonic development. Eight hundred and sixty somatic genes were not silenced properly and continued to be expressed in iSCNT embryos, which indicated incomplete nuclear reprogramming. We compared maternal RNA degradation in bovine oocytes between bovine-bovine SCNT and iSCNT embryos. While maternal RNA degradation occurred in both SCNT and iSCNT embryos, we saw more limited overall degradation of maternal RNA in iSCNT embryos than in SCNT embryos. Several important maternal RNAs, like GPF9, were not properly processed in SCNT embryos.Our data suggested that iSCNT embryos are capable of triggering EGA, while a portion of somatic cell-associated genes maintain their expression. Maternal RNA degradation seems to be impaired in iSCNT embryos. Further understanding of the biological roles of these genes, networks, and pathways revealed by iSCNT may expand our knowledge about cell reprogramming, pluripotency, and differentiation
Nucleolar Association and Transcriptional Inhibition through 5S rDNA in Mammals
Changes in the spatial positioning of genes within the mammalian nucleus have been associated with transcriptional differences and thus have been hypothesized as a mode of regulation. In particular, the localization of genes to the nuclear and nucleolar peripheries is associated with transcriptional repression. However, the mechanistic basis, including the pertinent cis- elements, for such associations remains largely unknown. Here, we provide evidence that demonstrates a 119 bp 5S rDNA can influence nucleolar association in mammals. We found that integration of transgenes with 5S rDNA significantly increases the association of the host region with the nucleolus, and their degree of association correlates strongly with repression of a linked reporter gene. We further show that this mechanism may be functional in endogenous contexts: pseudogenes derived from 5S rDNA show biased conservation of their internal transcription factor binding sites and, in some cases, are frequently associated with the nucleolus. These results demonstrate that 5S rDNA sequence can significantly contribute to the positioning of a locus and suggest a novel, endogenous mechanism for nuclear organization in mammals
Mutation analysis of three genes encoding novel LKB1-interacting proteins, BRG1, STRADα, and MO25α, in Peutz–Jeghers syndrome
Mutations in LKB1 lead to Peutz–Jeghers syndrome (PJS). However, only a subset of PJS patients harbours LKB1 mutations. We performed a mutation analysis of three genes encoding novel LKB1-interacting proteins, BRG1, STRADα, and MO25α, in 28 LKB1-negative PJS patients. No disease-causing mutations were detected in the studied genes in PJS patients from different European populations
Importin α7 Is Essential for Zygotic Genome Activation and Early Mouse Development
Importin α is involved in the nuclear import of proteins. It also contributes to spindle assembly and nuclear membrane formation, however, the underlying mechanisms are poorly understood. Here, we studied the function of importin α7 by gene targeting in mice and show that it is essential for early embryonic development. Embryos lacking importin α7 display a reduced ability for the first cleavage and arrest completely at the two-cell stage. We show that the zygotic genome activation is severely disturbed in these embryos. Our findings indicate that importin α7 is a new member of the small group of maternal effect genes
Chromatin remodelling complex dosage modulates transcription factor function in heart development
Dominant mutations in cardiac transcription factor genes cause human inherited congenital heart defects (CHDs); however, their molecular basis is not understood. Interactions between transcription factors and the Brg1/Brm-associated factor (BAF) chromatin remodelling complex suggest potential mechanisms; however, the role of BAF complexes in cardiogenesis is not known. In this study, we show that dosage of Brg1 is critical for mouse and zebrafish cardiogenesis. Disrupting the balance between Brg1 and disease-causing cardiac transcription factors, including Tbx5, Tbx20 and Nkx2–5, causes severe cardiac anomalies, revealing an essential allelic balance between Brg1 and these cardiac transcription factor genes. This suggests that the relative levels of transcription factors and BAF complexes are important for heart development, which is supported by reduced occupancy of Brg1 at cardiac gene promoters in Tbx5 haploinsufficient hearts. Our results reveal complex dosage-sensitive interdependence between transcription factors and BAF complexes, providing a potential mechanism underlying transcription factor haploinsufficiency, with implications for multigenic inheritance of CHDs
MicroRNA-21 targets tumor suppressor genes ANP32A and SMARCA4
MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. It is significantly elevated in the majority of human tumors and functionally linked to cellular proliferation, survival and migration. In this study, we used two experimental-based strategies to search for novel miR-21 targets. On the one hand, we performed a proteomic approach using two-dimensional differential gel electrophoresis (2D-DIGE) to identify proteins suppressed upon enhanced miR-21 expression in LNCaP human prostate carcinoma cells. The tumor suppressor acidic nuclear phosphoprotein 32 family, member A (ANP32A) (alias pp32 or LANP) emerged as the most strongly downregulated protein. On the other hand, we applied a mathematical approach to select correlated gene sets that are negatively correlated with primary-miR-21 (pri-miR-21) expression in published transcriptome data from 114 B-cell lymphoma cases. Among these candidates, we found tumor suppressor SMARCA4 (alias BRG1) together with the already validated miR-21 target, PDCD4. ANP32A and SMARCA4, which are both involved in chromatin remodeling processes, were confirmed as direct miR-21 targets by immunoblot analysis and reporter gene assays. Furthermore, knock down of ANP32A mimicked the effect of enforced miR-21 expression by enhancing LNCaP cell viability, whereas overexpression of ANP32A in the presence of high miR-21 levels abrogated the miR-21-mediated effect. In A172 glioblastoma cells, enhanced ANP32A expression compensated for the effects of anti-miR-21 treatment on cell viability and apoptosis. In addition, miR-21 expression clearly increased the invasiveness of LNCaP cells, an effect also seen in part upon downregulation of ANP32A. In conclusion, these results suggest that downregulation of ANP32A contributes to the oncogenic function of miR-21
The cost effectiveness of NHS physiotherapy support for occupational health (OH) services
Background:
Musculoskeletal pain is detrimental to quality of life (QOL) and disruptive to activities of daily living. It also places a major economic burden on healthcare systems and wider society. In 2006, the Welsh Assembly Government (WAG) established a three tiered self-referral Occupational Health Physiotherapy Pilot Project (OHPPP) comprising: 1.) telephone advice and triage, 2.) face-to-face physiotherapy assessment and treatment if required, and 3.) workplace assessment and a return-to-work facilitation package as appropriate. This study aimed to evaluate the feasibility and cost-effectiveness of the pilot service.
Methods:
A pragmatic cohort study was undertaken, with all OHPPP service users between September 2008 and February 2009 being invited to participate. Participants were assessed on clinical status, yellow flags, sickness absence and work performance at baseline, after treatment and at 3 month follow up. Cost-effectiveness was evaluated from both top-down and bottom-up perspectives and cost per Quality Adjusted Life Year (cost/QALY) was calculated. The cost-effectiveness analysis assessed the increase in service cost that would be necessary before the cost-effectiveness of the service was compromised.
Results
A total of 515 patients completed questionnaires at baseline. Of these, 486 were referred for face to face assessment with a physiotherapist and were included in the analysis for the current study. 264 (54.3%) and 199 (40.9%) were retained at end of treatment and 3 month follow up respectively. An improvement was observed at follow up in all the clinical outcomes assessed, as well as a reduction in healthcare resource usage and sickness absence, and improvement in self-reported work performance. Multivariate regression indicated that baseline and current physical health were associated with work-related outcomes at follow up. The costs of the service were £194-£360 per service user depending on the method used, and the health gains contributed to a cost/QALY of £1386-£7760, which would represent value for money according to current UK thresholds. Sensitivity analyses demonstrated that the service would remain cost effective until the service costs were increased to 160% per user.
Conclusions:
This pragmatic evaluation of the OHPPP indicated that it was likely to be feasible in terms of service usage and could potentially be cost effective in terms of QALYs. Further, the study confirmed that improving physical health status for musculoskeletal pain patients is important in reducing problems with work capacity and related costs. This study suggests that this type of service could be potentially be useful in reducing the burden of pain and should be further investigated, ideally via randomised controlled trials assessing effectiveness and cost-effectiveness
Loss of Maternal CTCF Is Associated with Peri-Implantation Lethality of Ctcf Null Embryos
CTCF is a highly conserved, multifunctional zinc finger protein involved in critical aspects of gene regulation including transcription regulation, chromatin insulation, genomic imprinting, X-chromosome inactivation, and higher order chromatin organization. Such multifunctional properties of CTCF suggest an essential role in development. Indeed, a previous report on maternal depletion of CTCF suggested that CTCF is essential for pre-implantation development. To distinguish between the effects of maternal and zygotic expression of CTCF, we studied pre-implantation development in mice harboring a complete loss of function Ctcf knockout allele. Although we demonstrated that homozygous deletion of Ctcf is early embryonically lethal, in contrast to previous observations, we showed that the Ctcf nullizygous embryos developed up to the blastocyst stage (E3.5) followed by peri-implantation lethality (E4.5–E5.5). Moreover, one-cell stage Ctcf nullizygous embryos cultured ex vivo developed to the 16–32 cell stage with no obvious abnormalities. Using a single embryo assay that allowed both genotype and mRNA expression analyses of the same embryo, we demonstrated that pre-implantation development of the Ctcf nullizygous embryos was associated with the retention of the maternal wild type Ctcf mRNA. Loss of this stable maternal transcript was temporally associated with loss of CTCF protein expression, apoptosis of the developing embryo, and failure to further develop an inner cell mass and trophoectoderm ex vivo. This indicates that CTCF expression is critical to early embryogenesis and loss of its expression rapidly leads to apoptosis at a very early developmental stage. This is the first study documenting the presence of the stable maternal Ctcf transcript in the blastocyst stage embryos. Furthermore, in the presence of maternal CTCF, zygotic CTCF expression does not seem to be required for pre-implantation development
- …