8 research outputs found

    Large-eddy simulation of a two-layer boundary-layer cloud system from the Arctic Ocean 2018 expedition

    Get PDF
    Climate change is particularly noticeable in the Arctic. The most common type of cloud at these latitudes is mixed-phase stratocumulus. These clouds occur frequently and persistently during all seasons and play a critical role in the Arctic energy budget. Previous observations in the central (north of 80&deg; N) Arctic have shown a high occurrence of prolonged periods of a shallow, single-layer mixed-phase stratocumulus at the top of the boundary layer (BL; altitudes ~300 to 400 m). However, recent observations from the summer of 2018 instead showed a prevalence of a two-layer boundary-layer cloud system. Here we use large-eddy simulation to examine the maintenance of one of the cloud systems observed in the summer of 2018 as well as the sensitivity of the cloud layers to different micro- and macro-scale parameters. We find that the model generally reproduces the observed thermodynamic structure well, with two near-neutrally stratified layers in the BL caused by a low cloud (located within the first few hundred meters) capped by a lower temperature inversion, and an upper cloud layer (based around one km or slightly higher) capped by the main temperature inversion of the BL. The investigated cloud structure is persistent unless there are low aerosol number concentrations (&le; 5 cm-3), which cause the upper cloud layer to dissipate, or high large-scale wind speeds (greater than or equal 8.5 m s-1), which erode the lower inversion and the related cloud layer. These types of changes in cloud structure lead to a substantial reduction of the net longwave radiation at the surface due to a lower emissivity or higher altitude of the remaining cloud layer. The findings highlight the importance of better understanding and representing aerosol sources and sinks over the central Arctic Ocean. Furthermore, they underline the significance of meteorological parameters, such as the large-scale wind speed, for maintaining the two-layer boundary-layer cloud structure encountered in the lower atmosphere of the central Arctic.</p

    Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed-Phase Clouds

    Get PDF
    As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN-derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a Îș value of ∌1.0. Large-eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed-phase low-level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed-phase cloud properties do not depend strongly on Îș, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed-phase clouds

    Influence of Arctic Microlayers and Algal Cultures on Sea Spray Hygroscopicity and the Possible Implications for Mixed‐Phase Clouds

    Get PDF
    As Arctic sea ice cover diminishes, sea spray aerosols (SSA) have a larger potential to be emitted into the Arctic atmosphere. Emitted SSA can contain organic material, but how it affects the ability of particles to act as cloud condensation nuclei (CCN) is still not well understood. Here we measure the CCN‐derived hygroscopicity of three different types of aerosol particles: (1) Sea salt aerosols made from artificial seawater, (2) aerosol generated from artificial seawater spiked with diatom species cultured in the laboratory, and (3) aerosols made from samples of sea surface microlayer (SML) collected during field campaigns in the North Atlantic and Arctic Ocean. Samples are aerosolized using a sea spray simulation tank (plunging jet) or an atomizer. We show that SSA containing diatom and microlayer exhibit similar CCN activity to inorganic sea salt with a Îș value of ∌1.0. Large‐eddy simulation (LES) is then used to evaluate the general role of aerosol hygroscopicity in governing mixed‐phase low‐level cloud properties in the high Arctic. For accumulation mode aerosol, the simulated mixed‐phase cloud properties do not depend strongly on Îș, unless the values are lower than 0.4. For Aitken mode aerosol, the hygroscopicity is more important; the particles can sustain the cloud if the hygroscopicity is equal to or higher than 0.4, but not otherwise. The experimental and model results combined suggest that the internal mixing of biogenic organic components in SSA does not have a substantial impact on the cloud droplet activation process and the cloud lifetime in Arctic mixed‐phase clouds

    Investigating aerosol effects on stratocumulus clouds through large-eddy simulation

    No full text
    Clouds have a large impact on Earth’s radiative budget by reflecting, absorbing and re-emitting radiation. They thus play a critical role in the climate system. Nevertheless, cloud radiative effects in a changing climate are highly uncertain. Atmospheric aerosol particles are another factor affecting Earth’s climate but the magnitude of their influence is also associated with high uncertainty. Therefore, an accurate representation of aerosol-cloud interactions in models is critical for having confidence in future climate projections. This thesis investigates aerosol impacts on cloud microphysical and radiative properties through numerical modelling, more specifically large-eddy simulation (LES). Moreover, the thesis investigates how the simulated cloud response to changes in the aerosol population depends on the model description of different processes. Mixed-phase stratocumulus (MPS) clouds are especially problematic to simulate for models on all scales. These clouds consist of a mixture of supercooled water and ice in the same volume and are therefore potentially thermodynamically unstable. MPS clouds over the central (north of 80° N) Arctic Ocean are particularly sensitive to aerosol changes due to the relatively clean atmospheric conditions in this region. At the same time, the clouds also have an important impact on the Arctic surface radiative budget. Therefore, this thesis mostly focuses on Arctic MPS clouds. Simulations of a typical subtropical marine stratocumulus cloud showed that the aerosol-cloud forcing depends on the model treatment for calculating the cloud droplet number concentration (CDNC). The simulated change in the top of the atmosphere shortwave radiation due to increased aerosol number concentrations was almost three times as large when the CDNC was prescribed compared to when the CDNC was prognostic. Simulations of a central Arctic summertime low-level MPS cloud confirmed that the chemical composition and the size of aerosol particles both can play an important role in determining the efficiency of an aerosol to act as cloud condensation nuclei - and thus influence cloud properties. However, the hygroscopicity of the aerosol particle was only important if the particles were small in size (i.e., if they correspond to the Aitken mode size) or if they were close to hydrophobic. Further, it was also found that Aitken mode particles can significantly change microphysical and radiative properties of central Arctic MPS if the concentration of larger particles (i.e., corresponding to the accumulation mode) is less than approximately 10-20 cm-3. One of the most recent research expeditions in the central Arctic (in the summer of 2018) was characterized by a high occurrence of multiple cloud layers. Namely, the boundary layer structure consisted of two MPS, one located close to the surface and one at the top of the boundary layer. Large-eddy simulations of an observed case with this particular cloud structure showed that the two-layer boundary-layer clouds are persistent unless the aerosol number concentrations are low (&lt; 5 cm-3) or the wind speed is high (≄ 8.5 m s-1). In the model, low aerosol numbers led to a dissipation of the upper cloud layer while the lower cloud layer dissipated if the wind speed was strong. Changes in the optical thickness and cloud emissivity of each individual cloud layer of the two-layer cloud structure were found to substantially impact the surface radiative fluxes.Moln har en stor betydelse för jordens strĂ„lningsbalans. De pĂ„verkar bĂ„de hur stor del av solinstrĂ„lningen som reflekteras tillbaka mot rymden, samt bidrar till vĂ€xthuseffekten. AtmosfĂ€ren vĂ€rms upp frĂ„n jordytan genom direkt vĂ€rmeöverföring och genom vĂ€rme som frigörs nĂ€r moln bildas av att vattenĂ„nga övergĂ„r till smĂ„ vattendroppar och/eller iskristaller. Moln spelar alltsĂ„ en avgörande roll i klimatsystemet. Trots det rĂ„der det en stor osĂ€kerhet kring hur molnstrĂ„lningseffekten kommer att pĂ„verkas i ett förĂ€ndrat klimat. Molndroppars storleksfördelning och moln-is-kristallers struktur spelar en avgörande roll för molnens strĂ„lningsegenskaper. I varje droppe/iskristall finns en mycket liten luftburen aerosolpartikel, ocksĂ„ kallad en kondensationskĂ€rna, som Ă€r cirka en tusendels millimeter i diameter. Utan kondensationskĂ€rnor skulle luftens vattenĂ„nga inte kunna kondenseras till vattendroppar eller iskristaller och bilda moln. För att moln ska kunna bildas krĂ€vs Ă€ven att de meteorologiska förutsĂ€ttningarna vind, fuktighet och temperatur Ă€r de rĂ€tta. PĂ„ grund av denna komplexitet, Ă€r representationen av aerosol- och moln interaktionen en stor utmaning. Denna avhandling undersöker aerosolpĂ„verkan pĂ„ molnets mikrofysikaliska och strĂ„lningsegenskaper genom numerisk modellering, mer specifikt med hjĂ€lp av en ”large-eddy simulation”. Dessutom undersöks hur olika modellbeskrivningar pĂ„verkar bildningen av molnen och deras livslĂ€ngd, samt betydelsen av hur mĂ„nga kondensationskĂ€rnorna Ă€r, hur stora de Ă€r och vad de bestĂ„r av. Simuleringarnas syfte Ă€r att öka vĂ„r kunskap om processerna som kontrollerar och upprĂ€tthĂ„ller moln typiska för de subtropiska havsomrĂ„dena och för Norra ishavet.De Arktiska molnen, över Norra ishavet (mellan 80°N - 90°N), bestĂ„r ofta av en blandning av underkylda vattendroppar och iskristaller. Dessa stratusmoln nĂ€rmast isytan spelar en central roll för det arktiska klimatet genom att reglera energiflöden vid ytan som pĂ„verkar hur havsisen fryser och smĂ€lter. Den mycket rena luften över ishavet, lĂ„ngt frĂ„n mĂ€nskliga utslĂ€pp, gör ocksĂ„ dessa moln kĂ€nsliga för potentiell en ökning av antalet kondensationskĂ€rnor. Att simulera strĂ„lningsegenskaperna av denna typ av vatten – och is-moln Ă€r dĂ€rför sĂ€rskilt utmanande för modeller pĂ„ alla skalor och utgör huvudfokus i denna avhandling. Ett utmĂ€rkande resultat frĂ„n molnsimuleringarna över Norra ishavet, sommartid, Ă€r att de bekrĂ€ftade att den kemiska sammansĂ€ttningen och storleken pĂ„ kondensationskĂ€rnorna, bestĂ€mmer med vilken effektivitet molndropparna bildas och dĂ€rmed pĂ„verkar molnens egenskaper. Hygroskopiciteten, dvs ett mĂ„tt pĂ„ hur kondensationskĂ€rnorna drar till sig luftens vattenĂ„nga, var emellertid endast viktig om partiklarna var smĂ„ i storlek (ca 30-50 nanometer, benĂ€mnda Aitkenmod-partiklar) eller om de var nĂ€ra hydrofoba. Vidare fann man ocksĂ„ att Aitken-partiklarna signifikant kan förĂ€ndra strĂ„lningsegenskaper hos de hög-Arktiska molnen om koncentrationen av större partiklar i accumuleringsmoden (ca 100 - 200 nanometer) Ă€r lĂ€gre Ă€n ungefĂ€r 10-20 per kubikcentimeter. Under en av de senaste forskningsexpeditionerna till hög-Arktis, sommaren 2018, observerades en hög förekomst av dubbla molnskikt; ett nĂ€rmast isytan pĂ„ ett par hundra meters höjd och det andra pĂ„ ca 1000 meters höjd. Vad gĂ€ller molnsystemets struktur sĂ„ visade simuleringarna en god överensstĂ€mmelse med observationerna. Vidare visade modellsimuleringarna att molnen kunde bibehĂ„llas om inte koncentrationen av kondensationskĂ€rnor understeg 5 per kubikcentimeter eller om vindhastigheten var lika med eller överskred 8,5 meter per sekund. Resultaten visade ocksĂ„ att variationen i ovan faktorer strĂ„lningsegenskaper för vardera av de tvĂ„ molnskikten vilket i sin tur visade sig vĂ€sentligt pĂ„verka energiflöden vid ishavets yta. Slutligen visade simuleringarna av ett typiskt subtropiskt stratocumulus att olika modellbeskrivningar för aktivering av molndroppar pĂ„verkar storleken pĂ„ moln- och klimat-responsen vid en ökad partikelkoncentration. Med andra ord, resultaten visar att den specifika modellbeskrivningen Ă€r av stor betydelse dĂ„ man simulerar aerosol-moln-interaktioner

    Investigating aerosol effects on stratocumulus clouds through large-eddy simulation

    No full text
    Clouds have a large impact on Earth’s radiative budget by reflecting, absorbing and re-emitting radiation. They thus play a critical role in the climate system. Nevertheless, cloud radiative effects in a changing climate are highly uncertain. Atmospheric aerosol particles are another factor affecting Earth’s climate but the magnitude of their influence is also associated with high uncertainty. Therefore, an accurate representation of aerosol-cloud interactions in models is critical for having confidence in future climate projections. This thesis investigates aerosol impacts on cloud microphysical and radiative properties through numerical modelling, more specifically large-eddy simulation (LES). Moreover, the thesis investigates how the simulated cloud response to changes in the aerosol population depends on the model description of different processes. Mixed-phase stratocumulus (MPS) clouds are especially problematic to simulate for models on all scales. These clouds consist of a mixture of supercooled water and ice in the same volume and are therefore potentially thermodynamically unstable. MPS clouds over the central (north of 80° N) Arctic Ocean are particularly sensitive to aerosol changes due to the relatively clean atmospheric conditions in this region. At the same time, the clouds also have an important impact on the Arctic surface radiative budget. Therefore, this thesis mostly focuses on Arctic MPS clouds. Simulations of a typical subtropical marine stratocumulus cloud showed that the aerosol-cloud forcing depends on the model treatment for calculating the cloud droplet number concentration (CDNC). The simulated change in the top of the atmosphere shortwave radiation due to increased aerosol number concentrations was almost three times as large when the CDNC was prescribed compared to when the CDNC was prognostic. Simulations of a central Arctic summertime low-level MPS cloud confirmed that the chemical composition and the size of aerosol particles both can play an important role in determining the efficiency of an aerosol to act as cloud condensation nuclei - and thus influence cloud properties. However, the hygroscopicity of the aerosol particle was only important if the particles were small in size (i.e., if they correspond to the Aitken mode size) or if they were close to hydrophobic. Further, it was also found that Aitken mode particles can significantly change microphysical and radiative properties of central Arctic MPS if the concentration of larger particles (i.e., corresponding to the accumulation mode) is less than approximately 10-20 cm-3. One of the most recent research expeditions in the central Arctic (in the summer of 2018) was characterized by a high occurrence of multiple cloud layers. Namely, the boundary layer structure consisted of two MPS, one located close to the surface and one at the top of the boundary layer. Large-eddy simulations of an observed case with this particular cloud structure showed that the two-layer boundary-layer clouds are persistent unless the aerosol number concentrations are low (&lt; 5 cm-3) or the wind speed is high (≄ 8.5 m s-1). In the model, low aerosol numbers led to a dissipation of the upper cloud layer while the lower cloud layer dissipated if the wind speed was strong. Changes in the optical thickness and cloud emissivity of each individual cloud layer of the two-layer cloud structure were found to substantially impact the surface radiative fluxes.Moln har en stor betydelse för jordens strĂ„lningsbalans. De pĂ„verkar bĂ„de hur stor del av solinstrĂ„lningen som reflekteras tillbaka mot rymden, samt bidrar till vĂ€xthuseffekten. AtmosfĂ€ren vĂ€rms upp frĂ„n jordytan genom direkt vĂ€rmeöverföring och genom vĂ€rme som frigörs nĂ€r moln bildas av att vattenĂ„nga övergĂ„r till smĂ„ vattendroppar och/eller iskristaller. Moln spelar alltsĂ„ en avgörande roll i klimatsystemet. Trots det rĂ„der det en stor osĂ€kerhet kring hur molnstrĂ„lningseffekten kommer att pĂ„verkas i ett förĂ€ndrat klimat. Molndroppars storleksfördelning och moln-is-kristallers struktur spelar en avgörande roll för molnens strĂ„lningsegenskaper. I varje droppe/iskristall finns en mycket liten luftburen aerosolpartikel, ocksĂ„ kallad en kondensationskĂ€rna, som Ă€r cirka en tusendels millimeter i diameter. Utan kondensationskĂ€rnor skulle luftens vattenĂ„nga inte kunna kondenseras till vattendroppar eller iskristaller och bilda moln. För att moln ska kunna bildas krĂ€vs Ă€ven att de meteorologiska förutsĂ€ttningarna vind, fuktighet och temperatur Ă€r de rĂ€tta. PĂ„ grund av denna komplexitet, Ă€r representationen av aerosol- och moln interaktionen en stor utmaning. Denna avhandling undersöker aerosolpĂ„verkan pĂ„ molnets mikrofysikaliska och strĂ„lningsegenskaper genom numerisk modellering, mer specifikt med hjĂ€lp av en ”large-eddy simulation”. Dessutom undersöks hur olika modellbeskrivningar pĂ„verkar bildningen av molnen och deras livslĂ€ngd, samt betydelsen av hur mĂ„nga kondensationskĂ€rnorna Ă€r, hur stora de Ă€r och vad de bestĂ„r av. Simuleringarnas syfte Ă€r att öka vĂ„r kunskap om processerna som kontrollerar och upprĂ€tthĂ„ller moln typiska för de subtropiska havsomrĂ„dena och för Norra ishavet.De Arktiska molnen, över Norra ishavet (mellan 80°N - 90°N), bestĂ„r ofta av en blandning av underkylda vattendroppar och iskristaller. Dessa stratusmoln nĂ€rmast isytan spelar en central roll för det arktiska klimatet genom att reglera energiflöden vid ytan som pĂ„verkar hur havsisen fryser och smĂ€lter. Den mycket rena luften över ishavet, lĂ„ngt frĂ„n mĂ€nskliga utslĂ€pp, gör ocksĂ„ dessa moln kĂ€nsliga för potentiell en ökning av antalet kondensationskĂ€rnor. Att simulera strĂ„lningsegenskaperna av denna typ av vatten – och is-moln Ă€r dĂ€rför sĂ€rskilt utmanande för modeller pĂ„ alla skalor och utgör huvudfokus i denna avhandling. Ett utmĂ€rkande resultat frĂ„n molnsimuleringarna över Norra ishavet, sommartid, Ă€r att de bekrĂ€ftade att den kemiska sammansĂ€ttningen och storleken pĂ„ kondensationskĂ€rnorna, bestĂ€mmer med vilken effektivitet molndropparna bildas och dĂ€rmed pĂ„verkar molnens egenskaper. Hygroskopiciteten, dvs ett mĂ„tt pĂ„ hur kondensationskĂ€rnorna drar till sig luftens vattenĂ„nga, var emellertid endast viktig om partiklarna var smĂ„ i storlek (ca 30-50 nanometer, benĂ€mnda Aitkenmod-partiklar) eller om de var nĂ€ra hydrofoba. Vidare fann man ocksĂ„ att Aitken-partiklarna signifikant kan förĂ€ndra strĂ„lningsegenskaper hos de hög-Arktiska molnen om koncentrationen av större partiklar i accumuleringsmoden (ca 100 - 200 nanometer) Ă€r lĂ€gre Ă€n ungefĂ€r 10-20 per kubikcentimeter. Under en av de senaste forskningsexpeditionerna till hög-Arktis, sommaren 2018, observerades en hög förekomst av dubbla molnskikt; ett nĂ€rmast isytan pĂ„ ett par hundra meters höjd och det andra pĂ„ ca 1000 meters höjd. Vad gĂ€ller molnsystemets struktur sĂ„ visade simuleringarna en god överensstĂ€mmelse med observationerna. Vidare visade modellsimuleringarna att molnen kunde bibehĂ„llas om inte koncentrationen av kondensationskĂ€rnor understeg 5 per kubikcentimeter eller om vindhastigheten var lika med eller överskred 8,5 meter per sekund. Resultaten visade ocksĂ„ att variationen i ovan faktorer strĂ„lningsegenskaper för vardera av de tvĂ„ molnskikten vilket i sin tur visade sig vĂ€sentligt pĂ„verka energiflöden vid ishavets yta. Slutligen visade simuleringarna av ett typiskt subtropiskt stratocumulus att olika modellbeskrivningar för aktivering av molndroppar pĂ„verkar storleken pĂ„ moln- och klimat-responsen vid en ökad partikelkoncentration. Med andra ord, resultaten visar att den specifika modellbeskrivningen Ă€r av stor betydelse dĂ„ man simulerar aerosol-moln-interaktioner

    MIMICA CDNC study output

    No full text
    <p>Model output from simulations using MIMICA version4 (Savre at el., 2014). The output is in the form of text files.</p> <p> </p> <p> </p

    The importance of Aitken mode aerosol particles for cloud sustenance in the summertime high Arctic - a simulation study supported by observational data

    No full text
    The potential importance of Aitken mode particles (diameters similar to 25-80 nm) for stratiform mixed-phase clouds in the summertime high Arctic (&gt; 80 degrees N) has been investigated using two large-eddy simulation models. We find that, in both models, Aitken mode particles significantly affect the simulated microphysical and radiative properties of the cloud and can help sustain the cloud when accumulation mode concentrations are low (&lt; 10-20 cm(-3)), even when the particles have low hygroscopicity (hygroscopicity parameter - kappa = 0.1). However, the influence of the Aitken mode decreases if the overall liquid water content of the cloud is low, either due to a higher ice fraction or due to low radiative cooling rates. An analysis of the simulated supersaturation (ss) statistics shows that the ss frequently reaches 0.5 % and sometimes even exceeds 1 %, which confirms that Aitken mode particles can be activated. The modelling results are in qualitative agreement with observations of the Hoppel minimum obtained from four different expeditions in the high Arctic. Our findings highlight the importance of better understanding Aitken mode particle formation, chemical properties and emissions, particularly in clean environments such as the high Arctic

    Predictors of embolism and death in left-sided infective endocarditis: the European Society of Cardiology EURObservational Research Programme European Infective Endocarditis registry

    No full text
    International audienceBackground and Aims Even though vegetation size in infective endocarditis (IE) has been associated with embolic events (EEs) and mortality risk, it is unclear whether vegetation size associated with these potential outcomes is different in left-sided IE (LSIE). This study aimed to seek assessing the vegetation cut-off size as predictor of EE or 30-day mortality for LSIE and to determine risk predictors of these outcomes. Methods The European Society of Cardiology EURObservational Research Programme European Infective Endocarditis is a prospective, multicentre registry including patients with definite or possible IE throughout 2016–18. Cox multivariable logistic regression analysis was performed to assess variables associated with EE or 30-day mortality. Results There were 2171 patients with LSIE (women 31.5%). Among these affected patients, 459 (21.1%) had a new EE or died in 30 days. The cut-off value of vegetation size for predicting EEs or 30-day mortality was &gt;10 mm [hazard ratio (HR) 1.38, 95% confidence interval (CI) 1.13–1.69, P = .0015]. Other adjusted predictors of risk of EE or death were as follows: EE on admission (HR 1.89, 95% CI 1.54–2.33, P &lt; .0001), history of heart failure (HR 1.53, 95% CI 1.21–1.93, P = .0004), creatinine &gt;2 mg/dL (HR 1.59, 95% CI 1.25–2.03, P = .0002), Staphylococcus aureus (HR 1.36, 95% CI 1.08–1.70, P = .008), congestive heart failure (HR 1.40, 95% CI 1.12–1.75, P = .003), presence of haemorrhagic stroke (HR 4.57, 95% CI 3.08–6.79, P &lt; .0001), alcohol abuse (HR 1.45, 95% CI 1.04–2.03, P = .03), presence of cardiogenic shock (HR 2.07, 95% CI 1.29–3.34, P = .003), and not performing left surgery (HR 1.30 95% CI 1.05–1.61, P = .016) (C-statistic = .68). Conclusions Prognosis after LSIE is determined by multiple factors, including vegetation size
    corecore