94 research outputs found

    Non-typhoidal Salmonella blood stream infection in Kuwait: Clinical and microbiological characteristics

    Get PDF
    Salmonella organisms are classified into typhoidal Salmonella (causing enteric fever) and non-typhoidal Salmonella (NTS) (causing infections other than enteric fever). Apart from causing other infections, NTS causes blood-stream infection (bacteremia and septicemia). NTS blood stream infection (NTS-BI) is considered to be an emerging and neglected tropical disease in Africa. It causes a very high morbidity and mortality in Africa. The individuals affected in Africa are children, malnourished people, patients with malaria or HIV etc. These conditions affect the immune system and make them vulnerable to infection with NTS. In these patients, diarrheal disease due to NTS is rare. The majority of infections are due to two types of NTS: Typhimurium and Enteritidis. There is a very high prevalence of multidrug-resistance in NTS making the infection difficult to treat. NTS-BI is also present in other parts of the world including developed countries albeit at a lower prevalence. Kuwait is a high- income, subtropical country in transition (from a developing to developed country), located in the Middle East. We studied NTS-BI in Al Farwaniya and Al Amiri hospitals in Kuwait during April 2013 to May 2016. Out of nearly 30,000 to more than 50,000 blood cultures done in these hospitals, NTS was present in 0. 75 to 1.33% of blood cultures, representing a very small proportion of blood cultures, unlike in Africa. This showed that 31 patients in Al Farwaniya hospital and 30 patients in Al Amari hospital had NTS-BI. Most of these patients had underlying illnesses such as diabetes, lung infection, cancer etc. that affect the immune system, as in Africa. Many patients also had diarrheal disease caused by the same NTS that caused blood stream infection, unlike in Africa. Only two patients in each hospital died, a low mortality, unlike in Africa. The majority of the isolates belonged to Typhimurium and Enteritidis as in Africa. Even though resistance to drugs was a problem, about quarter of the isolates only were multidrug-resistant, a lower prevalence compared to in Africa. In Kuwait, we performed a detailed genetic study of a selected number of Typhimurium and Enteritidis isolates by a modern technique called whole genome sequencing. This revealed genetic determinants encoding drug-resistance and virulence causing blood- stream infection. This type of study was not performed in African isolates. Thus, our study revealed similarities and differences with studies of NTS-BI in Africa

    Genome Sequence of the Saprophyte Leptospira biflexa Provides Insights into the Evolution of Leptospira and the Pathogenesis of Leptospirosis

    Get PDF
    Leptospira biflexa is a free-living saprophytic spirochete present in aquatic environments. We determined the genome sequence of L. biflexa, making it the first saprophytic Leptospira to be sequenced. The L. biflexa genome has 3,590 protein-coding genes distributed across three circular replicons: the major 3,604 chromosome, a smaller 278-kb replicon that also carries essential genes, and a third 74-kb replicon. Comparative sequence analysis provides evidence that L. biflexa is an excellent model for the study of Leptospira evolution; we conclude that 2052 genes (61%) represent a progenitor genome that existed before divergence of pathogenic and saprophytic Leptospira species. Comparisons of the L. biflexa genome with two pathogenic Leptospira species reveal several major findings. Nearly one-third of the L. biflexa genes are absent in pathogenic Leptospira. We suggest that once incorporated into the L. biflexa genome, laterally transferred DNA undergoes minimal rearrangement due to physical restrictions imposed by high gene density and limited presence of transposable elements. In contrast, the genomes of pathogenic Leptospira species undergo frequent rearrangements, often involving recombination between insertion sequences. Identification of genes common to the two pathogenic species, L. borgpetersenii and L. interrogans, but absent in L. biflexa, is consistent with a role for these genes in pathogenesis. Differences in environmental sensing capacities of L. biflexa, L. borgpetersenii, and L. interrogans suggest a model which postulates that loss of signal transduction functions in L. borgpetersenii has impaired its survival outside a mammalian host, whereas L. interrogans has retained environmental sensory functions that facilitate disease transmission through water

    Conservation of the S10-spc-α Locus within Otherwise Highly Plastic Genomes Provides Phylogenetic Insight into the Genus Leptospira

    Get PDF
    S10-spc-α is a 17.5 kb cluster of 32 genes encoding ribosomal proteins. This locus has an unusual composition and organization in Leptospira interrogans. We demonstrate the highly conserved nature of this region among diverse Leptospira and show its utility as a phylogenetically informative region. Comparative analyses were performed by PCR using primer sets covering the whole locus. Correctly sized fragments were obtained by PCR from all L. interrogans strains tested for each primer set indicating that this locus is well conserved in this species. Few differences were detected in amplification profiles between different pathogenic species, indicating that the S10-spc-α locus is conserved among pathogenic Leptospira. In contrast, PCR analysis of this locus using DNA from saprophytic Leptospira species and species with an intermediate pathogenic capacity generated varied results. Sequence alignment of the S10-spc-α locus from two pathogenic species, L. interrogans and L. borgpetersenii, with the corresponding locus from the saprophyte L. biflexa serovar Patoc showed that genetic organization of this locus is well conserved within Leptospira. Multilocus sequence typing (MLST) of four conserved regions resulted in the construction of well-defined phylogenetic trees that help resolve questions about the interrelationships of pathogenic Leptospira. Based on the results of secY sequence analysis, we found that reliable species identification of pathogenic Leptospira is possible by comparative analysis of a 245 bp region commonly used as a target for diagnostic PCR for leptospirosis. Comparative analysis of Leptospira strains revealed that strain H6 previously classified as L. inadai actually belongs to the pathogenic species L. interrogans and that L. meyeri strain ICF phylogenetically co-localized with the pathogenic clusters. These findings demonstrate that the S10-spc-α locus is highly conserved throughout the genus and may be more useful in comparing evolution of the genus than loci studied previously

    Comparative Transcriptional and Translational Analysis of Leptospiral Outer Membrane Protein Expression in Response to Temperature

    Get PDF
    Leptospirosis, caused by Leptospira spp., is a disease of worldwide significance affecting millions of people annually. Bacteria of this species are spread by various carrier animals, including rodents and domestic livestock, which shed the leptospires via their urine into the environment. Humans become infected through direct contact with carrier animals or indirectly via contaminated water or soil. Temperature is a key trigger used by many bacteria to sense changes in environmental conditions, including entry from the environment into the host. This study was the first comprehensive research into changes occurring in the outer membrane of Leptospira in response to temperature and how these changes correlate with gene expression changes. An understanding of the regulation and function of these proteins is important as they may provide an adaptation and survival advantage for the microorganism which may enhance its ability to infect hosts and cause disease. Our data suggest regulation of proteins in the outer membrane which may possibly be a mechanism to minimise interactions with the host immune response

    Molecular Characterization of a 21.4 Kilobase Antibiotic Resistance Plasmid from an α-Hemolytic Escherichia coli O108:H- Human Clinical Isolate

    Get PDF
    This study characterizes the 21.4 kilobase plasmid pECTm80 isolated from Escherichia coli strain 80, an α hemolytic human clinical diarrhoeal isolate (serotype O108:H-). DNA sequence analysis of pECTm80 revealed it belonged to incompatibility group X1, and contained plasmid partition and toxin-antitoxin systems, an R6K-like triple origin (ori) replication system, genes required for replication regulation, insertion sequences IS1R, ISEc37 and a truncated transposase gene (Tn3-like ΔtnpA) of the Tn3 family, and carried a class 2 integron. The class 2 integron of pECTm80 contains an intact cassette array dfrA1-sat2, encoding resistance to trimethoprim and streptothricin, and an aadA1 gene cassette truncated by the insertion of IS1R. The complex plasmid replication system includes α, β and γ origins of replication. Pairwise BLASTn comparison of pECTm80 with plasmid pE001 reveals a conserved plasmid backbone suggestive of a common ancestral lineage. Plasmid pECTm80 is of potential clinical importance, as it carries multiple genes to ensure its stable maintenance through successive bacterial cell divisions and multiple antibiotic resistance genes

    Exploring the Zoonotic Potential of Mycobacterium avium Subspecies paratuberculosis through Comparative Genomics

    Get PDF
    A comparative genomics approach was utilised to compare the genomes of Mycobacterium avium subspecies paratuberculosis (MAP) isolated from early onset paediatric Crohn's disease (CD) patients as well as Johne's diseased animals. Draft genome sequences were produced for MAP isolates derived from four CD patients, one ulcerative colitis (UC) patient, and two non-inflammatory bowel disease (IBD) control individuals using Illumina sequencing, complemented by comparative genome hybridisation (CGH). MAP isolates derived from two bovine and one ovine host were also subjected to whole genome sequencing and CGH. All seven human derived MAP isolates were highly genetically similar and clustered together with one bovine type isolate following phylogenetic analysis. Three other sequenced isolates (including the reference bovine derived isolate K10) were genetically distinct. The human isolates contained two large tandem duplications, the organisations of which were confirmed by PCR. Designated vGI-17 and vGI-18 these duplications spanned 63 and 109 open reading frames, respectively. PCR screening of over 30 additional MAP isolates (3 human derived, 27 animal derived and one environmental isolate) confirmed that vGI-17 and vGI-18 are common across many isolates. Quantitative real-time PCR of vGI-17 demonstrated that the proportion of cells containing the vGI-17 duplication varied between 0.01 to 15% amongst isolates with human isolates containing a higher proportion of vGI-17 compared to most animal isolates. These findings suggest these duplications are transient genomic rearrangements. We hypothesise that the over-representation of vGI-17 in human derived MAP strains may enhance their ability to infect or persist within a human host by increasing genome redundancy and conferring crude regulation of protein expression across biologically important regions

    Draft genome sequences of eight campylobacter volucris isolates from freshwater sources in Victoria, Australia

    Get PDF
    Campylobacter spp. can survive and be transmitted from a range of environments. Here, we examine eight draft genome sequences of Campylobacter volucris, identified as part of an examination of waterborne Campylobacter species. This is the first report of environmental survival of C. volucris outside gull species

    Draft genome sequences of eight campylobacter volucris isolates from freshwater sources in Victoria, Australia

    No full text
    Campylobacter spp. can survive and be transmitted from a range of environments. Here, we examine eight draft genome sequences of Campylobacter volucris, identified as part of an examination of waterborne Campylobacter species. This is the first report of environmental survival of C. volucris outside gull species.</p
    corecore