3 research outputs found

    Development of HDAC Inhibitors Exhibiting Therapeutic Potential in T-Cell Prolymphocytic Leukemia

    Get PDF
    Epigenetic targeting has emerged as an efficacious therapy for hematological cancers. The rare and incurable T-cell prolymphocytic leukemia (T-PLL) is known for its aggressive clinical course. Current epigenetic agents such as histone deacetylase (HDAC) inhibitors are increasingly used for targeted therapy. Through a structure-activity relationship (SAR) study, we developed an HDAC6 inhibitor KT-531, which exhibited higher potency in T-PLL compared to other hematological cancers. KT-531 displayed strong HDAC6 inhibitory potency and selectivity, on-target biological activity, and a safe therapeutic window in nontransformed cell lines. In primary T-PLL patient cells, where HDAC6 was found to be overexpressed, KT-531 exhibited strong biological responses, and safety in healthy donor samples. Notably, combination studies in T-PLL patient samples demonstrated KT-531 synergizes with approved cancer drugs, bendamustine, idasanutlin, and venetoclax. Our work suggests HDAC inhibition in T-PLL could afford sufficient therapeutic windows to achieve durable remission either as standalone or in combination with targeted drugs.Peer reviewe

    ABT-888 restores sensitivity in temozolomide resistant glioma cells and xenografts.

    No full text
    BACKGROUND:Temozolomide (TMZ) is active against glioblastomas (GBM) in which the O6-methylguanine-DNA methyltransferase (MGMT) gene is silenced. However, even in responsive cases, its beneficial effect is undermined by the emergence of drug resistance. Here, we tested whether inhibition of poly (ADP-ribose) polymerase-1 and -2 (PARP) enhanced the effectiveness of TMZ. METHODS:Using patient derived brain tumor initiating cells (BTICs) and orthotopic xenografts as models of newly diagnosed and recurrent high-grade glioma, we assessed the effects of TMZ, ABT-888, and the combination of TMZ and ABT-888 on the viability of BTICs and survival of tumor-bearing mice. We also studied DNA damage repair, checkpoint protein phosphorylation, and DNA replication in mismatch repair (MMR) deficient cells treated with TMZ and TMZ plus ABT-888. RESULTS:Cells and xenografts derived from newly diagnosed MGMT methylated high-grade gliomas were sensitive to TMZ while those derived from unmethylated and recurrent gliomas were typically resistant. ABT-888 had no effect on the viability of BTICs or tumor bearing mice, but co-treatment with TMZ restored sensitivity in resistant cells and xenografts from newly diagnosed unmethylated gliomas and recurrent gliomas with MSH6 mutations. In contrast, the addition of ABT-888 to TMZ had little sensitizing effect on cells and xenografts derived from newly diagnosed methylated gliomas. In a model of acquired TMZ resistance mediated by loss of MMR gene MSH6, re-sensitization to TMZ by ABT-888 was accompanied by persistent DNA strand breaks, re-engagement of checkpoint kinase signaling, and interruption of DNA synthesis. CONCLUSION:In laboratory models, the addition of ABT-888 to TMZ overcame resistance to TMZ
    corecore