355 research outputs found

    Motion of domain walls and the dynamics of kinks in the magnetic Peierls potential

    Get PDF
    We study the dynamics of magnetic domain walls in the Peierls potential due to the discreteness of the crystal lattice. The propagation of a narrow domain wall (comparable to the lattice parameter) under the effect of a magnetic field proceeds through the formation of kinks in its profile. We predict that, despite the discreteness of the system, such kinks can behave like sine-Gordon solitons in thin films of materials such as yttrium iron garnets, and we derive general conditions for other materials. In our simulations we also observe long-lived breathers. We provide analytical expressions for the effective mass and limiting velocity of the kink in excellent agreement with our numerical results.Comment: 12 pages, 9 figures (incl. supp. mat.

    Dirac electrons and domain walls: a realization in junctions of ferromagnets and topological insulators

    Get PDF
    We study a system of Dirac electrons with finite density of charge carriers coupled to an external electromagnetic field in two spatial dimensions, with a domain wall (DW) mass term. The interface between a thin-film ferromagnet and a three-dimensional topological insulator provides a condensed-matter realization of this model, when an out-of-plane domain wall magnetization is coupled to the TI surface states. We show how, for films with very weak intrinsic in-plane anisotropies, the torque generated by the edge electronic current flowing along the DW competes with an effective in-plane anisotropy energy, induced by quantum fluctuations of the chiral electrons bound to the wall, in a mission to drive the internal angle of the DW from a Bloch configuration towards a N\'eel configuration. Both the edge current and the induced anisotropy contribute to stabilize the internal angle, so that for weak intrinsic in-plane anisotropies DW motion is still possible without suffering from an extremely early Walker breakdown.Comment: 18 pages, 3 figure

    Shaped-multibeam antennas for the reception of TV-programs of broadcasting satellites

    Get PDF

    Zero modes in magnetic systems: general theory and an efficient computational scheme

    Get PDF
    The presence of topological defects in magnetic media often leads to normal modes with zero frequency (zero modes). Such modes are crucial for long-time behavior, describing, for example, the motion of a domain wall as a whole. Conventional numerical methods to calculate the spin-wave spectrum in magnetic media are either inefficient or they fail for systems with zero modes. We present a new efficient computational scheme that reduces the magnetic normal-mode problem to a generalized Hermitian eigenvalue problem also in the presence of zero modes. We apply our scheme to several examples, including two-dimensional domain walls and Skyrmions, and show how the effective masses that determine the dynamics can be calculated directly. These systems highlight the fundamental distinction between the two types of zero modes that can occur in spin systems, which we call special and inertial zero modes. Our method is suitable for both conservative and dissipative systems. For the latter case, we present a perturbative scheme to take into account damping, which can also be used to calculate dynamical susceptibilities.Comment: 64 pages, 15 figure

    Chirality-dependent transmission of spin waves through domain walls

    Get PDF
    Spin-wave technology (magnonics) has the potential to further reduce the size and energy consumption of information processing devices. In the submicrometer regime (exchange spin waves), topological defects such as domain walls may constitute active elements to manipulate spin waves and perform logic operations. We predict that spin waves that pass through a domain wall in an ultrathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial Dzyaloshinskii-Moriya interaction and can be interpreted as a geometric phase. We demonstrate analytically and by means of micromagnetic simulations that the phase shift is strong enough to switch between constructive and destructive interference. The two chirality states of the domain wall may serve as a memory bit or spin-wave switch in magnonic devices.Comment: 11 pages, 10 figures (incl. supp. mat.); Phys. Rev. Lett. (accepted

    Nonlinear effects in the propagation of optically generated magnetostatic volume mode spin waves

    Get PDF
    Recent experimental work has demonstrated optical control of spin wave emission by tuning the shape of the optical pulse (Satoh et al.\ Nature Photonics, 6, 662 (2012)). We reproduce these results and extend the scope of the control by investigating nonlinear effects for large amplitude excitations. We observe an accumulation of spin wave power at the center of the initial excitation combined with short-wavelength spin waves. These kind of nonlinear effects have not been observed in earlier work on nonlinearities of spin waves. Our observations pave the way for the manipulation of magnetic structures at a smaller scale than the beam focus, for instance in devices with all-optical control of magnetism.Comment: Added new figures to further illustrate the nonlinear effects to show time evolution and spectral flow. Added references. Changed perspective on nonlinear effects w.r.t. applicability of NSE. Added acknowledgemen

    Universality of cauliflower-like fronts: from nanoscale thin films to macroscopic plants

    Get PDF
    Chemical vapor deposition (CVD) is a widely used technique to grow solid materials with accurate control of layer thickness and composition. Under mass-transport-limited conditions, the surface of thin films thus produced grows in an unstable fashion, developing a typical motif that resembles the familiar surface of a cauliflower plant. Through experiments on CVD production of amorphous hydrogenated carbon films leading to cauliflower-like fronts, we provide a quantitative assessment of a continuum description of CVD interface growth. As a result, we identify non-locality, non-conservation and randomness as the main general mechanisms controlling the formation of these ubiquitous shapes.We also show that the surfaces of actual cauliflower plants and combustion fronts obey the same scaling laws, proving the validity of the theory over seven orders of magnitude in length scales. Thus, a theoretical justification is provided, which had remained elusive so far, for the remarkable similarity between the textures of surfaces found for systems that differ widely in physical nature and typical scales.Publicad

    Dynamical Renormalization Group Study for a Class of Non-local Interface Equations

    Full text link
    We provide a detailed Dynamic Renormalization Group study for a class of stochastic equations that describe non-conserved interface growth mediated by non-local interactions. We consider explicitly both the morphologically stable case, and the less studied case in which pattern formation occurs, for which flat surfaces are linearly unstable to periodic perturbations. We show that the latter leads to non-trivial scaling behavior in an appropriate parameter range when combined with the Kardar-Parisi-Zhang (KPZ) non-linearity, that nevertheless does not correspond to the KPZ universality class. This novel asymptotic behavior is characterized by two scaling laws that fix the critical exponents to dimension-independent values, that agree with previous reports from numerical simulations and experimental systems. We show that the precise form of the linear stabilizing terms does not modify the hydrodynamic behavior of these equations. One of the scaling laws, usually associated with Galilean invariance, is shown to derive from a vertex cancellation that occurs (at least to one loop order) for any choice of linear terms in the equation of motion and is independent on the morphological stability of the surface, hence generalizing this well-known property of the KPZ equation. Moreover, the argument carries over to other systems like the Lai-Das Sarma-Villain equation, in which vertex cancellation is known {\em not to} imply an associated symmetry of the equation.Comment: 34 pages, 9 figures. Journal of Statistical Mechanics: Theory and Experiments (in press
    • …
    corecore