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Spin-wave technology (magnonics) has the potential to further reduce the size and energy con-
sumption of information processing devices. In the submicrometer regime (exchange spin waves),
topological defects such as domain walls may constitute active elements to manipulate spin waves
and perform logic operations. We predict that spin waves that pass through a domain wall in an ul-
trathin perpendicular-anisotropy film experience a phase shift that depends on the orientation of the
domain wall (chirality). The effect, which is absent in bulk materials, originates from the interfacial
Dzyaloshinskii–Moriya interaction and can be interpreted as a geometric phase. We demonstrate
analytically and by means of micromagnetic simulations that the phase shift is strong enough to
switch between constructive and destructive interference. The two chirality states of the domain
wall may serve as a memory bit or spin-wave switch in magnonic devices.

Motivated by the aim to reduce energy dissipation in
electronic devices, spin waves are considered as an alter-
native information carrier in the field of magnon spin-
tronics [1]. A spin wave acquires a phase shift when it
passes through a magnetic domain wall (DW) [2]. In
this Letter, we show that the Dzyaloshinskii–Moriya in-
teraction (DMI) in ultrathin ferromagnetic films makes
the phase shift dependent on the DW chirality, leading
to constructive/destructive interference in a two-branch
interferometer. The mechanism we identify raises the
prospect of magnonic devices in which DW chirality acts
as a spin-wave switch.

It is by now clear that the DMI plays a crucial role
in the magnetization dynamics of ultrathin films [3–6],
due to the broken inversion symmetry at the interfaces.
The interfacial DMI favors, in a perpendicular-anisotropy
film, Néel DWs with a fixed chirality [Fig. 1(d)] [5, 7], in
competition with the dipolar interaction, which tends to
favor Bloch DWs [Fig. 1(b)]. The most interesting regime
is when the two interactions have a comparable strength,
yielding a DW intermediate between Bloch and Néel [7, 8]
with two stable minimum-energy configurations (chiral-
ity states) whose in-plane orientations differ by ∼ 90◦, as
shown in Fig. 1(c).

Recent experiments demonstrated that DWs can be
brought into the intermediate regime, and that the DMI
strength can be fine-tuned by modifying the thicknesses
of the adjacent nonmagnetic layers [9]. The internal ori-
entation might be also tuned by an adjacent layer of a
topological insulator; its surface states induce in the mag-
netic layer an interfacial-DMI-like effect that depends on
chemical potential and applied electric field [10–13].

Our main result is summarized in Fig. 2, where we con-
sider an interferometer in which incoming spin waves are
divided between two identical waveguides, each contain-
ing a DW. The two DWs are identical in every respect ex-
cept possibly their chirality. When the spin waves rejoin,
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they are transmitted or reflected depending on the phase
difference. While it is obvious that spin waves interfere
constructively if the two DWs have the same chirality
[Fig. 2(a)], we ask if it is possible to achieve destructive
interference (spin wave blocked) by reversing the chiral-
ity of one DW [Fig. 2(b)]. Without DMI, the two chiral-
ity states of the Bloch DW induce identical phase shifts,
leading to constructive interference [Fig. 2(c)]. For strong
DMI, the DW has a single stable (Néel) configuration and
the phase shifts are obviously also identical [Fig. 2(e)].
However, for intermediate DMI, the two equilibrium ori-
entations induce geometric phase shifts differing by as
much as 180◦ [Fig. 2(d)]. In this regime, the interfer-
ometer can switch between constructive and destructive
interference – transmission or reflection – depending on
whether the chiralities are identical or opposite.

The two chirality states are separated by an energy
barrier ∆E (an unfavorable Néel configuration). If ∆E
is high enough, spontaneous reversals of chirality due
to thermal fluctuations are very rare (for the system in
Fig. 3, we obtain ∆E = 2.5 × 10−12 erg = 61 kBTroom).
We could consider the intermediate-DMI interferometer
as a two-state memory device where the transmission
of spin waves serves as readout mechanism (‘open’ or
‘closed’).

Switching does not require modifications of the mate-
rial parameters, nor to insert or remove DWs [2], but only
to reverse the chirality of one DW, for instance by a field
pulse normal to the plane of the film. (The ‘field pulse’
might alternatively be generated through optomagnetic
effects [14], provided the light can be focused onto a sin-
gle branch.) The field causes the DW magnetization to
precess as shown in Fig. 4 until, when it is switched off,
the DW relaxes to the nearest chirality state.

We have tested the results of Fig. 2, which we de-
rive analytically below, by means of explicit micromag-
netic simulations. The total energy E is given by the
sum of the usual micromagnetic energy functionals for
exchange Eex = A

∫∫
(‖∂xm‖2 + ‖∂ym‖2) dx dy, uniax-

ial anisotropy Eani = −K
∫∫

m2
z dxdy, and dipolar en-
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FIG. 1. (color online). Effect of the interfacial DMI on the
magnetization profile m(x) of a DW in a thin film with per-
pendicular anisotropy. (a) Away from the DW, magnetization
points out of the film (ẑ or −ẑ). Near the DW, the DMI cre-
ates an effective field HDMI in the −x̂ direction. Depending
on the competition between the dipolar and DMI interactions,
the equilibrium configurations ©,©′, F,F′, and �, shown
in (b)–(d), are possible. (b) Without DMI, the minimum-
energy configurations (flux closure) are two equivalent Bloch
DWs (©, in dark colors, and ©′, in light colors), whose in-
plane orientations differ by 180◦. (c) For intermediate DMI,
the minimum-energy configurations are intermediate between
Bloch and Néel. There are two equivalent minimum-energy
states (F and F′), whose in-plane orientations differ by ap-
prox. 90◦ for an appropriately tuned DMI strength D. (d) For
strong DMI, a single minimum-energy configuration � exists:
a Néel DW with magnetization in the center pointing in the
−x̂ direction.

ergy [15], plus a functional

EDMI = −2D

∫∫
m · (∇mz) dx dy (1)

describing the DMI induced near the interfaces of the ul-
trathin film [5]. The DMI strength D can be positive or
negative (we take D > 0 in Figs. 1 and 2). We treat
the film as effectively two-dimensional (magnetization is
a function of x and y only), but we do consider the fi-
nite film thickness L in the z direction for the dipolar
interactions [15]. Here we consider a waveguide made of
a long strip of ultrathin film with perpendicular magne-
tization (K > 2πM2

S , where MS is saturation magnetiza-
tion). The waveguide width W is at least so large that
the dipolar interactions, in the absence of DMI, favor a
Bloch DW.

The interfacial DMI is qualitatively different from a
DMI ∝

∫∫∫
m · (∇ × m) dV present in isotropic bulk

materials with a chiral crystal structure [15]. The effect

FIG. 2. (color online). Interferometer setup in a thin
film with perpendicular anisotropy. The two DWs may have
(a) identical or (b) opposite chiralities. Spin waves enter the
device from the left. If the chiralities are identical, construc-
tive interference is always obtained on the right-hand side.
For opposite chiralities, the phase difference depends on the
DMI strength, as shown in (c)–(e). (c) Without DMI, spin
waves interfere constructively even if the chiralities are op-
posite (©,©′). (d) For intermediate DMI, we find a phase
difference ∆ϕ of up to 180◦ (destructive interference) for op-
posite chirality statesF,F′. (e) For strong DMI, the configu-
rations in both branches are the same (�), trivially resulting
in constructive interference. In (c)–(e), large arrows repre-
sent the equilibrium magnetization direction m(x). On the

left, spin-wave basis vectors â, b̂ are defined identically for all
configurations ©,©′,F,F′,�. Their orientation after par-
allel transportation, shown on the right, depends on the DW
configuration. In (d), notice that the transported basis vec-
tors for F and F′ are rotated by 180◦. This geometric phase
difference ∆ϕgeom is the dominant contribution to ∆ϕ.

of a bulk DMI on the interaction of spin waves with DWs
was considered in Refs. [16] and [17]. Since a bulk DMI
favors the Bloch DW (© in Figs. 1 and 2), it does not,
in the geometry considered here, provide the competition
with dipolar interactions that is essential to obtain the
intermediate DW with two equivalent minimum-energy
orientations F,F′ differing by approximately 90◦.

Figure 3 shows how spin waves, generated on the
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FIG. 3. (color online). Micromagnetic simulations of the
propagation of spin waves in a ferromagnetic thin-film waveg-
uide with perpendicular magnetization (2πM2

S = 0.907K,

L = 3 l, where l =
√
A/K) through DWs of the indicated

chiralities (©′,F′ vs. ©,F). (a) Without DMI (D = 0),
spin waves experience the same phase shift regardless of DW
chirality, leading to constructive interference (avg = average).
(b) For intermediate DMI (D = 0.06A/l), there is a phase
difference of almost 180◦ between spin waves that passed
through DWs of different chirality, leading to destructive in-
terference. We remark that the attenuation on the right-hand
side is not the result of Gilbert damping (we take α = 0.0030),
but merely represents the present location of the wavefront
[t = 89.6MS/(|γ|K)].

left-hand side of the strip, pass through a DW. We
solve the Landau–Lifshitz–Gilbert (LLG) equation, for
relaxed initial states, on a square grid (0.33l × 0.33l
cells) using a self-developed C++ code [18] with implicit-
midpoint time integration [19]. Spin waves are gener-
ated by a space-local, time-periodic in-plane applied field
(ω = 1.70 |γ|K/MS), switched on at t = 0. Each waveg-
uide strip (267l × 10l) is simulated in a vacuum-padded
periodic box (333l × 27l). We calculate the difference
∆ϕ = ϕ′−ϕ in phase shift between the two chiralities at
the right-hand side of the interferometer, comparing in-
termediate DMI to the case without DMI. A phase differ-
ence of up to 180◦ (destructive interference) is obtained
for intermediate DMI.

Fixing 4πMS = 3.8 kG and A = 10−6 erg/cm [4],
the other parameters of Fig. 3 become f = 9.9 GHz
(frequency), W = 127 nm (waveguide width ≈ wave-

length), D = 0.047 erg/cm
2
, and L = 38 nm, assum-

ing the free-electron gyromagnetic ratio. Spin waves of
such frequencies and wavelengths can be experimentally
generated, observed, and visualized [20–22]. Since the
DMI is an interfacial effect, D is inversely proportional
to film thickness L [23]. Extrapolation of the values in

Ref. [4] (D = 0.5 erg/cm
2
, L = 3 nm) suggests that

D ∼ 0.04 erg/cm
2

is realistic for L ∼ 38 nm.
The phase difference ∆ϕ between spin waves traveling

along the two paths (F and F′) has a geometric [24]
origin. It is convenient to define ϕ = ϕgeom+ϕrel. A spin
wave causes magnetization to precess around its local
equilibrium direction m(x) [25]. In the limit of exchange
spin waves (kx →∞), the dynamics induced by the wave
is given by the real part of

m(x) + εei[ωt+kxx+kyy+ϕrel(x)][â(x)− ib̂(x)], (2)

where ε > 0 is the infinitesimal amplitude of the spin
wave (linear regime). The orthonormal basis vectors

â(x), b̂(x) must be perpendicular to m(x) for all x, so
that their orientation continually changes across the DW.

A natural choice is to define â(x), b̂(x) according to par-
allel transport, dâ

dx = −(â · dm
dx )m, by which the basis

vectors, at any given point x, match their orientation in
an infinitesimal neighborhood of x as closely as possible.

The function ϕrel(x) in Eq. 2 determines the phase of

the spin wave relative to the basis â, b̂. However, the

orientation of the basis â, b̂ after parallel transportation
across the DW strongly depends on the DW configura-
tion (©, ©′, F, F′, or �), as shown in Fig. 2(c)–(e).

This reorientation of â, b̂ implies an additional phase
shift ϕgeom, which is purely geometric in nature.

It is apparent from Fig. 2(c)–(e) that the geometric
contribution is approximately given by

∆ϕgeom ≈ 4ϑ, (3)

where ϑ is the in-plane angle of the magnetization at
the DW center, as shown in Fig. 2(d). For example,
we have a geometric phase difference ∆ϕgeom ≈ 180◦

for intermediate DWs with ϑ = 45◦. The value of ϑ
is determined by the competition between the DMI and
the dipolar interaction, as shown in Fig. 5(a). While
in principle ∆ϕgeom depends on the exact shape of the
equilibrium profile m(x), we find that the deviation from
Eq. (3) is at most a few degrees [15].

We derive [15] the relative contribution ∆ϕrel for kx →
∞, up to a correction of order |kx|−1, as

∆ϕrel =
D

2A

∫ ∞
−∞

m′y(x) dx− D

2A

∫ ∞
−∞

my(x) dx, (4)

where m′y and my are the magnetization profiles F′,F
calculated numerically, taking into account DMI and
dipolar interactions. Notice that the exchange interac-
tion does not contribute directly to Eq. (4) because the

basis â(x), b̂(x) (parallel transport) absorbs such a con-
tribution into ∆ϕgeom.

Equation (4) gives, approximately,

∆ϕrel = ϕ′rel − ϕrel ≈
D

A
w0 cosϑ, (5)

where w0 is a characteristic DW width (w0 ≈ πl for
2πM2

S � K). Notice that ∆ϕrel vanishes for D = 0
(©,©′) and for large D (�), where ϑ = π/2 (Néel wall).
As shown in Fig. 5(b), the contribution of ∆ϕrel enhances
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FIG. 4. (color online). Evolution of the magnetization during switching of DW chirality by means of an applied field
Hz perpendicular to the film in a two-dimensional micromagnetic simulation. Only a part of the waveguide is shown. The
arrows represent the direction of the in-plane component of magnetization m(t, x, y) and the color the z component. We take
Hz = 0.09K/MS, α = 0.2; other parameters as in Fig. 3(b).

FIG. 5. (a) DW angle ϑ as a function of the ratio of DMI
strength D and dipolar interaction, for three film thicknesses
L, taking

√
2πM2

S/K = 0.8 [26]. The angle ϑ determines
whether intermediate DWs (F′,F) are closer to a Bloch or a
Néel configuration. More “Néel-like” DWs (larger ϑ) are ob-
tained for stronger D. Conversely, the dipolar interaction pe-
nalizes the Néel configuration (this effect is weaker in thinner
films). (b) Phase difference ∆ϕ between spin waves passing
through DWs of opposite chiralities (F′ vs. F), as a func-

tion of ϑ, in the kx →∞ limit, for two values of
√

2πM2
S/K,

taking L = 3.0l. The dominant contribution ∆ϕgeom is sepa-
rated out. The remaining contribution ∆ϕrel lowers the value
of ϑ needed for destructive interference (∆ϕ = 180◦). For√

2πM2
S/K = 0.9, ∆ϕrel is larger than for 0.5 because a rela-

tively strong DMI D/(Aw−1
0 ) is then needed to obtain a given

ϑ.

the effect of ∆ϕgeom and merely shifts the critical internal
angle ϑ for perfect destructive interference (∆ϕ = 180◦)
to a somewhat lower value (more Bloch-like DW). There-
fore the concept of the interferometer spin-wave switch
is robust: we can always find a DW angle 0◦ < ϑ < 90◦

such that the phase difference ∆ϕ between opposite chi-
ralities is exactly 180◦. The desired value ϑ could then be

realized by fine-tuning the DMI strength D [Fig. 5(a)].
While Eq. (4) is derived in the short-wavelength limit,

we have numerically solved the spin-wave normal-mode
problem [18] for incoming waves of arbitrary wavenum-
ber kx. The phase shifts ϕ′, ϕ depend significantly on kx,
as in the case without DMI (ϕ = 2 arctan (kxl)

−1 [27]),
but the difference ∆ϕ = ϕ′ − ϕ between the two chirali-
ties, which is the relevant quantity in our interferometer,
is weakly wavelength dependent for wavelengths compa-
rable to (or shorter than) the DW width. The weak de-
pendence of ∆ϕ on kx can, under certain approximations,
also be derived analytically [15]. This observation justi-
fies our approach kx →∞.

In summary, we have shown that the interfacial
Dzyaloshinskii–Moriya interaction in ultrathin magnetic
films provides a new way of manipulation of spin waves.
With this interaction, spin waves experience a differ-
ent phase shift when passing through DWs of different
chiralities, leading to either constructive or destructive
interference in a two-branch interferometer. One can
open or close the transmission of spin waves through
the device by changing the DW chirality in one of the
two branches. This opens the possibility of developing a
memory element or transistor based on the manipulation
of magnonic currents without charge transport.
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Supplemental Material
I. SYMMETRIES AND THE

DZYALOSHINSKII–MORIYA INTERACTION

This section provides some background on the distinct
forms of the Dzyaloshinskii–Moriya interaction (DMI) re-
ferred to in the main text.

A. Bulk versus interfacial DMI

For the DMI to be noticeable at the continuum level,
it is necessary that the central inversion symmetry of
the system is broken. This may be the case because the
crystal structure itself is noncentrosymmetric (chiral or
polar) or because the geometry of the system breaks the
inversion symmetry, for instance near a surface or inter-
face. A variety of continuum models for the DMI exist,
which all arise from the same microscopic definition. The
difference lies in the orientation of the Dzyaloshinskii–
Moriya vectors Dij that define the interaction between
atoms i, j.

We consider two high-symmetry special cases of the
DMI. The continuum form EDMI = D

∫
m · (∇×m) dV

describes a DMI that is chiral (it changes sign under any
reflection) but which is otherwise completely isotropic.
An alternative form EDMI = −2D

∫
m ·∇(n̂ ·m) dA per-

tains to a system that is polar : the inversion symmetry is
broken by a director n̂, which changes sign under central

http://arxiv.org/abs/1602.01362
http://arxiv.org/abs/1602.01362


6

D1n

r1n
1

2

3

5 4

D1n

r1n
1

2

3

5 4

(a) bulk (b) interface

FIG. S6. Directions of the Dzyaloshinskii–Moriya vectors
Dij and the lattice displacement vectors rij between atoms
i, j. (a) For a bulk DMI, the Dij roughly point into the
direction of rij . The Dij “diverge away from” (or “converge
to”) a given atom i. (b) For an interfacial DMI, the Dij

“curl around” a given atom i, with a sense determined by the
normal n̂.

reflection; however, the system is achiral in that it re-
mains invariant under any reflections that leave n̂ intact.
The system is isotropic only in the plane normal to n̂.

The interface of a magnetic layer with another material
defines a polar axis n̂ (the interface normal), which gives
rise to a DMI of the polar form (if we neglect any in-
plane anisotropies). For this reason, the polar form is
usually referred to as the interfacial DMI. The chiral but
isotropic form of the DMI is usually referred to as the
bulk DMI, since it is the simplest expression that models
the DMI in a chiral crystal in bulk (again neglecting any
anisotropies). A crystal structure is chiral if it cannot
be superimposed onto its mirror image in any way. We
remark, for completeness, that a bulk crystal may also
show an ‘interfacial’ DMI effect if it has a polar crystal
structure [28].

The distinct effects of the bulk DMI and the interfa-
cial DMI are well known from the theory of magnetic
skyrmions, where it is found that the ‘bulk’ model pre-
dicts Bloch skyrmions while the ‘interfacial’ model pre-
dicts Néel skyrmions [29]. Similarly, it is found that a
strong interfacial DMI tends to push a domain wall into
a Néel configuration with a well-defined chirality, while a
strong bulk DMI stabilizes one particular chirality of the
Bloch domain wall.

In Sec. I B, we link the cases of bulk DMI and interfa-
cial DMI to atomistic toy models. In Sec. I C, we explain
that the preference of each type of DMI for one or the
other type of domain wall (Bloch vs. Néel) is a direct
consequence of its symmetries.

B. Atomistic and continuum models

This section shows how the continuum energy func-
tionals for bulk (S9) and interfacial (S12) DMI can be
derived from the atomistic definition Eq. (S6), given ap-
propriate choices for the Dzyaloshinskii–Moriya vectors
Dij .

At the level of individual magnetic moments, the DMI

is by definition any interaction that can be written as

EDMI =
∑
ij

Dij · (mi ×mj), (S6)

where mi is the microscopic magnetic moment on site i
and Dij is the Dzyaloshinskii–Moriya interaction vector
between sites i and j, which without loss of generality sat-
isfies Dij = −Dji. For simplicity, let us assume that the
magnetic atoms of the crystal are arranged as a Bravais
lattice, where we use the symbol rij = rj − ri to rep-
resent any given (near-neighbor) lattice vector. (Notice
that, for obvious reasons, the overall crystal structure of
a noncentrosymmetric crystal must be more complicated
than just a single Bravais lattice.)

By translation invariance in the bulk, the magni-
tude and direction of Dij must be a function of rij
only. For simplicity, we shall assume that only nearest-
neighbor interactions are important and that rij rep-
resents a nearest-neighbor lattice vector. If the ma-
terial is isotropic, the only reasonable choice for the
Dzyaloshinskii–Moriya vector is Dij = Drij , where
D is a (positive or negative) interaction strength.
The Dzyaloshinskii–Moriya vectors Dij seem to “di-
verge” from any given site i, as shown schematically in
Fig. S6(a).

Near a surface or interface, by contrast, the interface
normal n̂ introduces a preferential direction, which we
could give a definite sense be defining it to point from ma-
terial A into material B. By symmetry arguments [30], it
is found that the Dij vectors “curl around” a given site
i with a well-defined sense induced by the direction of n̂,
as shown schematically in Fig. S6(b). Considering only
the highest layer of magnetic atoms below the interface
and only their nearest-neighbor interactions, the only
natural choice in the absence of in-plane anisotropy is
Dij = Dn̂× rij , since Dij must be a vector-valued func-
tion linear both in rij (because of the rule Dij = −Dji)
and in n̂ (because the polar axis n̂ is the only element
that breaks inversion symmetry).

Passing to a continuum theory, Eq. (S6) becomes

EDMI =

∫ ∑
r

D(r) · [m× (r · ∇)m] Ω−1d3r, (S7)

where Ω represents a unit-cell volume and r sums over
all relevant near-neighbor lattice vectors. In the case of
isotropic bulk DMI with only nearest-neighbor interac-
tions, we substitute D(r) = Dr. Equation (S7) becomes,
in tensor notation,

EDMI =

∫
D%adεabcmb∂dmc Ω−1d3r, (S8)

where %ab =
∑

r ra rb. Assuming %ab = αδab for some
scalar α > 0 (isotropy), we get

EDMI = −αD
∫
mbεbac∂amc = −αD

∫
m · (∇×m).

(S9)



7

For the interfacial DMI, on the other hand, we have
Dij = Dn̂ × rij , where n̂ is the interface normal. For
simplicity, we take n̂ = ẑ. We get

EDMI =
∑
r

∫
(Dεabczb rc)εademd(rf∂fme) Ω−1d2r

(S10a)

=

∫
D%cf εabcεadezbmd∂fme Ω−1d2r (S10b)

=

∫
D%cf (δbdδce − δbeδcd)zbmd∂fme Ω−1d2r.

(S10c)

Notice that we now integrate over the interface plane only
and assume that m does not depend on the perpendicular
coordinate z (here Ω represents a unit area). Assuming
%ab = αδab, we get

EDMI = αD

∫
(zbmb∂cmc − zbmc∂cmb) Ω−1d2r (S11a)

= αD

∫
[(ẑ ·m)(∇ ·m)−m · ∇(ẑ ·m)] Ω−1d2r.

(S11b)

Using the divergence theorem, we get

EDMI = −2αD

Ω

∫
U

m·(∇mz) d2r+
αD

Ω

∮
∂U

(mzm)·dz∂U ,

(S12)
where mz(r) = ẑ ·m(r). The boundary term is irrelevant
if we integrate over all space (U = R2).

C. Effect on domain-wall energy

While the bulk DMI is chiral but isotropic, the in-
terfacial DMI is polar but achiral (and isotropic under
rotations around the ẑ axis). The two forms considered
here are the only possibilities that satisfy these respec-
tive constraints, regardless of the details of the micro-
scopic model. The same symmetry considerations deter-
mine how the two forms of the DMI respond to Bloch
or Néel domain walls in a thin film with perpendicular
anisotropy. In Fig. S7, we compare the two chirality
states that exist of either type of wall. The bulk DMI
selects one of the two chiralities of the Bloch wall as its
most favorable orientation (energy minimum), and the
other Bloch chirality as the least favorable orientation
(energy maximum). On the other hand, the interfacial
DMI selects one of the two chiralities of the Néel wall as
its most favorable orientation, and the other Néel chiral-
ity as the least favorable orientation.

We can interpret this behavior as follows. The two
chirality states of the Bloch wall are related by a reflec-
tion in the xz plane. Since such a reflection leaves the
z-director unchanged, it follows that the interfacial DMI
cannot discriminate between the two chiralities of the
Bloch wall. The bulk DMI can, because the bulk DMI is

(a) Bloch walls

⊙ ⊗ ⊙ ⊗
reflection

x
y

x
z

(b) Néel walls

⊙ ⊗ ⊙ ⊗
180° rotation

n

FIG. S7. (color online). Symmetries of the two types of do-
main wall. (a) The two distinct states of the Bloch wall are
related by a reflection that leaves the surface normal n̂ in-
variant. The bulk DMI selects one Bloch state as the most
favorable and the other Bloch state as the least favorable ori-
entation. The interfacial DMI does not discriminate between
the two. (b) The two distinct states of the Néel wall are re-
lated by 180◦ rotation that reverses the surface normal n̂. The
interfacial DMI selects one Néel state as the most favorable
and the other Néel state as the least favorable orientation.
The bulk DMI does not discriminate between the two.

not invariant under any spatial reflections. The two chi-
ralities of the Néel wall, on the other hand, are related
by a 180◦ rotation around the y axis. Such a rotation is
a symmetry of the bulk DMI (isotropy) but not of the in-
terfacial DMI (reversal of n̂). As a consequence, only the
interfacial DMI discriminates between the two chiralities
of the Néel wall.

The orientation of a Bloch domain wall will not be af-
fected by a small bulk DMI, as both chiralities represent
extrema of the bulk DMI. A small interfacial DMI, by
contrast, causes a change in orientation of the Bloch do-
main wall, reorienting it slightly towards the favorable
Néel state.

II. DIPOLAR INTERACTION

This section specifies the energy functionals used to
describe the dipolar (magnetostatic) interaction in our
micromagnetic simulations and numerical calculations.

Throughout this work, we assume that the magne-
tization is homogeneous in z inside the ferromagnetic
film (uniform-mode approximation). In other words,
we assume that the magnetization may be written as
M(x, y, z) = MSm(x, y, z) = MSΠ(z/L)m(x, y), where
L is the film thickness and where Π(ξ) = 1 for |ξ| < 1

2
and Π(ξ) = 0 otherwise. This simplification can be jus-
tified in the regime that L / l, where l is the exchange
length.
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It can be derived (see, for example, Ref. [31]) that the
total dipolar energy (defined per unit thickness) is given,
in reciprocal space, by

Edip = 2πM2
S

∫
m̃∗a(k)g̃ab(k)m̃b(k)

d2k

(2π)2
(S13)

with

g̃uv(kx, ky) = (1−Nk)
kukv
k2

, (S14a)

g̃uz(kx, ky) = 0, (S14b)

g̃zz(kx, ky) = Nk, (S14c)

where k =
√
k2x + k2y and where the indices u, v repre-

sent the in-plane coordinates x, y. The function ma(r)
describes the a component of the normalized magnetiza-
tion field. Its Fourier transform m̃a(k) is defined as

m̃a(k) =

∫∫
ma(r)e−ik·r d2r. (S15)

The demagnetizting factor Nk is given by

Nk =
1− e−kL

kL
. (S16)

We define Nk=0 = 1 by continuity. Notice that Nk→∞ =
0. We have omitted from Eq. (S13) some contributions of
the form

∫∫
‖m̃(k)‖2d2k = (2π)2

∫∫
‖m(r)‖2 d2r, which

are constant.
For a system with periodic boundary conditions that

is defined on a rectangular grid, we evaluate the dipolar
interaction in O(n log n) time using a fast Fourier trans-
form (FFT). Finite magnetic elements, such as a waveg-
uides with a finite width, might also, somewhat approxi-
mately, be simulated in this way, provided that sufficient
zero padding is inserted around the object to minimize
the influence of the other periodic copies.

For a one-dimensional magnetization profile m(x), as-
sumed to extend infinitely and uniformly in the y direc-
tion (ky = 0), we may write the dipolar energy in real
space as

Edip = 2πM2
S

∫∫
ma(x′)gab(x

′ − x)mb(x) dx dx′ (S17)

where

gxx(x) = δ(x)− 1

2πL
log
(

1 +
L2

x2

)
, (S18a)

gzz(x) =
1

2πL
log
(

1 +
L2

x2

)
, (S18b)

gxy(x) = gyy(x) = gxz(x) = gyz(x) = 0. (S18c)

These expressions can be useful when evaluating the
dipolar interaction for a system that is not periodic in
x, such as a domain wall, where we have m(−∞) = ẑ
while m(∞) = −ẑ. We remark that an efficient numeri-
cal implementation of Eq. (S17) might still evaluate the
convolution through an FFT, but special care must be
taken to correctly take into account the asymptotic be-
havior of m(x) for x→ −∞ and x→∞.

III. PHASE SHIFT IN THE WKB
APPROXIMATION (k →∞)

In this section, we provide a derivation of our expres-
sion for the relative part ϕrel of the phase shift in the
k → ∞ limit, presented in the main text as Eq. (4). In
Fig. S8, we evaluate the geometric phase shift ϕgeom and
the expression (4) for ϕrel for numerically calculated equi-
librium domain-wall profiles m(x), confirming the accu-
racy of Eqs. (3) and (5) of the main text.

An equilibrium magnetization profile m(x) is found by
minimization of total energy E under the constraint that
‖m(x)‖ = 1 for all x. It satisfies

δE

δm(x)
= −h(x)m(x), (S19)

where the expression on the left-hand size denotes a func-
tional derivative. The scalar-valued function h(x) is a
Lagrange multiplier. The equilibrium profile m(x) suf-
fices to calculate the geometric phase induced by parallel
transport of the basis vectors. However, to determine the
relative phase we must solve the normal-mode equation,
which can be expressed in coordinate-free form [23] as∫

δ2E

δm(x)δm(x′)
· u(x′) dx′ + h(x)u(x)

− MS

|γ|
iω[m(x)× u(x)] = λ(x)m(x), (S20)

where γ is the gyromagnetic ratio, h(x) is fixed by
Eq. (S19), and where λ(x) is a Lagrange multiplier, un-
der the constraint that m(x) · u(x) = 0 at all x. The
frequency ω is fixed by the wavenumber kx of the spin
wave far away from the domain wall.

Equation (S20), when written out explicitly in terms

of u(x) = a(x)â(x) + b(x)b̂(x), becomes a complicated
integro-differential equation. (Nonlocality arises from the
dipolar interaction.) Here we find an approximate so-
lution using the Wentzel–Kramers–Brillouin (WKB) ap-
proximation, which is exact in the short-wavelength limit.
We assume that the solution ∼ ei

∫ x k′x(x
′) dx′

locally re-
sembles a plane wave and replace any differential opera-
tor ∂x with ik′x (analogously for convolution operators)
in order to solve for k′x independently for each x. For the
interactions specified in the main text, including interfa-
cial DMI, we get(

A(k′x)2 MSω
2|γ| i+Dmyik

′
x

−MSω
2|γ| i−Dmyik

′
x A(k′x)2

)(
a
b

)
= 0,

(S21)
where, anticipating the limit |kx| → ∞, we have written
only terms that are of at least first order in k′x or kx.
The exchange interaction acts as a scalar A(k′x)2 because

we define the basis â(x), b̂(x) according to parallel trans-
port. We substitute the dispersion relation far away from
the domain wall, ω ≈ (2|γ|A/MS)k2x, again up to correc-
tions of constant order. The characteristic equation of
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(a)

θ=75°

60°
45°

15°

(b)

 (
°)

 (°)

 (
°)

FIG. S8. Phase-shift contributions ∆ϕgeom and ∆ϕrel (for
kx → ∞) obtained from the minimum-energy domain-wall
profiles, which are numerically calculated as a function of the
parameters A, K, MS, L, and D taking the dipolar inter-
action (S17) into account. The variables ϑ and w0 are also
evaluated. (a) The geometric part ∆ϕgeom follows Eq. (3) of
the main text (solid line), with a deviation of at most a few de-

grees even in extreme cases (dashed line,
√

2πM2
S/K = 0.98).

(b) The relative part ∆ϕrel depends on the DMI strength D
(as compared to exchange) and on the domain-wall angle ϑ;
it follows approximately Eq. (5) of the main text. For given
Dw0/A and ϑ, the dependence on the third dimensionless pa-
rameter is negligible. The dashed line indicates the relation
between D and ϑ if we fix

√
2πM2

S/K = 0.90 and L = 3.0l.

the matrix in Eq. (S21) has four solutions. We are in-
terested in the solution k′x closest to kx, which is given
by

k′x(x) = kx +
D

2A
my(x) +O(|kx|−1). (S22)

The phase induced by the domain wall on top of the phase
factor eikxx is now given in the WKB approximation by
ϕ =

∫∞
−∞[k′x(x)− kx] dx. We find

ϕrel =
D

2A

∫ ∞
−∞

my(x) dx, (S23)

up to a correction of order |kx|−1.
Figure S8 shows a numerical evaluation of the two con-

tributions ∆ϕgeom and ∆ϕrel to the phase-shift difference
∆ϕ = ϕ′ − ϕ between domain walls of opposite chirality
(e.g.,F′ andF in the main text). To describe the behav-
ior of ∆ϕrel, we introduce the characteristic domain-wall

width w =
∫ √

m2
x +m2

y dx, which we evaluate from the

equilibrium profile m(x). The variable w0 is then the
value of w for an equivalent domain wall with D = 0 and
the other parameters (A, K, MS, and L) the same.

For completeness, we derive that the equiva-
lent of Eq. (S23) for a bulk DMI is ϕrel =
−[D/(2A)]

∫∞
−∞mx(x) dx. Notice that the latter expres-

sion vanishes for any Bloch domain wall.

IV. PHASE SHIFT IN A LOCALIZED MODEL

In this section, we derive analytically, under certain ap-
proximations, the effect of an interfacial DMI on the equi-

librium profile and phase shift of a Bloch domain wall.
In particular, we present a closed-form expression (S41)
for the phase shift that is valid for arbitrary wavenumber
kx. The expression suggests that the difference in phase
shift between the two chiralities is almost independent of
the wavelength of the spin wave.

Our analytical treatment complements the WKB ap-
proach of Sec. III in two ways. First, it allows one to
obtain a semianalytical expression for the equilibrium
domain-wall profile, which in the WKB approach is taken
as given (ie, calculated numerically). Second, it provides
an expression for the phase shift for arbitrary kx, where
the WKB approach considers only the kx → ∞ limit.
The two approximations made are that we take into ac-
count the main effect of the dipolar interaction as an
effective local interaction, and that we treat the effect of
the DMI perturbatively (small D). The results presented
here are consistent with the WKB expression (Sec. III)
if we substitute into (S23) the equilibrium profile m(x)
calculated for the approximated dipolar interaction [but
notice that we need to add the geometric part ϕgeom to
Eq. (S23) to obtain the total phase shift].

A. Simplified treatment of dipolar interaction

In our analytical treatment, we follow Ref. [32] in in-
cluding the dipolar effects (shape anisotropy) into a lo-
cal anisotropy energy. We argue that, on scales much
smaller than the film thickness L, only the δ-function
part of Eq. (S18a) is important and the effect of the
dipolar interaction (S17) reduces to a local anisotropy∫
K⊥mx(x)2 dx with K⊥ = 2πM2

S . Notice that, even
though the dipolar interaction is isotropic, the x coor-
dinate plays a special role because we assume that x̂ is
the domain-wall normal (magnetization is a function of
x only). The total anisotropy energy is now given by

Eani =

∫ (
−Km2

z +K⊥m
2
x

)
dx, (S24)

where K,K⊥ are positive constants. The in-plane
anisotropy K⊥ models the dipolar interaction in intro-
ducing a preference for Bloch domain walls (flux closure).

This localized approximation is formally valid in the
limit that the magnetization profile m depends only on
x and extends infinitely not only in the y but also in
the z direction. In practice, this means that we assume
normal incidence of spin waves and a wavelength and ex-
change length much shorter than film thickness L. While
these assumptions are unrealistic in most practical cases,
they allow us to obtain some analytical results that are
qualitatively correct.

In addition to the easy-axis and in-plane anisotropies,
we take into account the interfacial DMI

EDMI = −2D

∫
mx(x)m′z(x) dx (S25)

and the usual exchange term Eex = A
∫
‖m′(x)‖2 dx,

where a prime denotes a derivative with respect to x.
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FIG. S9. The function q(ξ; s), defined by Eq. (S31), for
several values of the parameter s. The special function sech ξ
is shown for comparison.

B. Equilibrium profile

In a one-dimensional system, the magnetization profile
may be described by two functions θ(x), φ(x), defined by

m(x) =

 mx

my

mz

 =

 sin θ cosφ
sin θ sinφ

cos θ

 . (S26)

The equilibrium magnetization profile of the domain wall
is a solution of

δE

δθ(x)
= −2Aθ′′ +A(φ′)2 sin 2θ

+ (K +K⊥ cos2 φ) sin 2θ

− 2D sin2 θ sinφφ′ = 0, (S27a)

δE

δφ(x)
= 2A sin θφ′′ + 4A cos θθ′φ′

+ 2K⊥ sin θ sinφ cosφ

− 2D sin θ sinφθ′ = 0, (S27b)

where the expressions on the left-hand side are functional
derivatives of total energy.

For a system with only exchange A and uniaxial
anisotropy K (D = K⊥ = 0), it is well known that the
equilibrium profile, assuming m(−∞) = ẑ and m(∞) =
−ẑ, is given by

θ0(x) = 2 arctan[exp(x/l)], (S28)

where l =
√
A/K is the exchange length, while the func-

tion φ0(x) takes an arbitrary constant value. If we set
K⊥ > 0, we get the well-known Bloch magnetization pro-

file

θ0(x) = 2 arctan[exp(x/l)], (S29a)

φ0(x) = ±π/2. (S29b)

The sign (±) defines the chirality of the domain wall.
Both chiralities represent equivalent stable energy min-
ima. The positive sign corresponds to the configuration
©′ as defined in the main text; the negative sign to ©.

As a result of the competition with K⊥, the interfacial
DMI (S25) modifies the domain-wall profile, as calculated
numerically in Ref. [8]. Here, we treat the DMI as a small
perturbation (|D| � K⊥l). It can be derived that we get,
to first order in D, a minimum-energy configuration

θ0(x) = 2 arctan[exp(x/l)], (S30a)

φ0(x) = ±π/2± D

K⊥l
q
(x
l

; s
)

, (S30b)

where s =
√
K/K⊥. Perpendicular magnetization im-

plies s > 1. The function q(ξ; s), shown in Fig. S9, is
uniquely defined as the solution of(

−s2 cosh2 ξ
d

dξ
sech2 ξ

d

dξ
+ 1

)
q = sech ξ (S31)

that is even and vanishes at infinity (particular part).
It is useful to compare Eq. (S30) to the equilibrium

profile that is obtained if a bulk DMI instead of the in-
terfacial DMI is present. In that case, we obtain the same
equilibrium profile as in Eq. (S29); in other words, the
bulk DMI has no effect on the profile of the Bloch domain
wall. The reason is that, given any Bloch profile, where
φ(x) = ±π/2 and θ(x) is arbitrary, the functional deriva-
tives δEDMI/δθ(x) and δEDMI/δφ(x) of the bulk DMI
energy EDMI = D

∫
m · (∇ ×m) dx = −2D

∫
mym

′
z dx

with respect to the profile functions θ(x), φ(x) vanish.

C. Linearized dynamics

The dynamics is described by the Landau–Lifshitz–
Gilbert (LLG) equation without damping

− MS

|γ|
∂m

∂t
= m×

(
− δE

δm(x, y)

)
, (S32)

where MS is the saturation magnetization, γ is the gy-
romagnetic ratio, and E = Eex + Eani + EDMI is the
total interaction energy. Let us consider small variations
δθ = θ(t, x, y)− θ0(x) and δφ = φ(t, x, y)−φ0(x) around
Eq. (S30). We get a linearized equation of motion

(
−A

(
∂2x + ∂2y

)
+K(1− 2 sech2 x/l) −[MS/(2|γ|)]∂t ∓ (2D/l)F̂

[MS/(2|γ|)]∂t ∓ (2D/l)F̂ † −A
(
∂2x + ∂2y

)
+K(1− 2 sech2 x/l) +K⊥

)(
δθ

sech(x/l)δφ

)
= 0 (S33)
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where

F̂ = (l/2) sech(x/l)h(x/l; s)∂x cosh(x/l)

+ q(x/l; s) tanh(x/l) (S34)

with h = s2q′′ − q is the perturbation caused by the DM
interaction, to first order in D. Notice that F̂ is odd in
x and breaks reflection symmetry. (The system remains
invariant under a simultaneous reflection and change in
polarity, which is equivalent to a rotation around ẑ.)

D. Transmission phase shift

We assume that the solutions are periodic in t and
y. Equation (S33) becomes a Hamiltonian normal-mode
problem [18]. Away from the domain wall (|x| � l), the
spin waves take the form(

δθ
sech(x/l)δφ

)
=

(
1

−i
√

K+Ak2

K+K⊥+Ak2

)
ei(ωt+kxx+kyy)

(S35)

with ω = (2|γ|/MS)
√

(K +Ak2)(K +K⊥ +Ak2),

where k =
√
k2x + k2y.

We now calculate the reflection (r) and transmission
(t) amplitudes of an incoming spin wave with wavenum-
ber kx that propagates in the positive-x direction. The
amplitudes r′, t′ refer to an incoming spin wave wave
that propagates in the negative-x direction (wavenum-
ber −kx) and approaches the domain wall from the other
side. Equation (S35) defines the scattering states.

For D = 0, the analytic solutions of Eq. (S33) are
well known [33]. The propagating-wave solutions take
the form(

1

−i
√

K+Ak2

K+K⊥+Ak2

)
f(x)ei(ωt+kxx+kyy), (S36)

where [27]

f(x) = −ikxl + tanh(x/l). (S37)

It follows immediately that(
r t′

t r′

)
=

(
0 eiϕ0

eiϕ0 0

)
, (S38)

where

ϕ0 = arg
(ikxl − 1)

(ikxl + 1)
= 2 arctan

1

kxl
. (S39)

Notice that the domain wall shows total transmission in
the localized model. [However, if the full dipolar interac-
tion is taken into account, we find a nonzero reflection for
long-wavelength spin waves (see also, for example, [27]).]

We now calculate the effect of the interfacial DMI on
the transmission phase and amplitude. As above, we take
into account the DMI to first order in the interaction
strength D. With some algebraic work, we obtain(

r t′

t r′

)
=

(
0 ei(ϕ0−ϕ1)

ei(ϕ0+ϕ1) 0

)
, (S40)

where ϕ0 is again given by Eq. (S39), and where

ϕ1 = ∓π
(
D

Kl
+

D

K⊥l

)
×
√

(K +Ak2)(K +K⊥ +Ak2)

2K +K⊥ + 2Ak2
. (S41)

Notice that only ϕ1 depends on chirality (±). Since (S33)
defines the scattering problem relative to the basis vec-

tors θ̂, φ̂, which have a fixed orientation at x = −∞ and
at x = ∞, the expression (S41) includes both the geo-
metric and relative parts of the phase shift.

Unlike ϕ0, the chirality-dependent part ϕ1 depends
only very weakly on wavenumber k; it is, in fact, almost
constant in k, as shown in Fig. S10. We find numerically
that this conclusion even holds if D is not small or if the
full dipolar interaction (S17) is taken into account in the
scattering problem, at least in the regime where the wave-
length is comparable to the domain-wall width or shorter.
This justifies our approach of taking the kx → ∞ limit
in the calculation of ϕrel in Sec. III (the geometric part
ϕgeom is independent of kx by definition).

K⊥/K = 0.5

φ0

φ1

φ 
(°

)

0

45

90

135

180

k  (l-1)
0 0.5 1 1.5 2 2.5 3

FIG. S10. Dependence of the phase shifts ϕ0 [given by
Eq. (S39)] and ϕ1 [given by Eq. (S41)] on wavenumber k.
For a spin wave propagating in the potitive-x direction, the
total phase shift induced by the domain wall is the sum ϕ0 +
ϕ1. Notice that ϕ1 is almost constant in k. Since only the
part ϕ1 depends on domain-wall chirality (±), the difference
in phase shift between the two chiralities – in other words,
the phase difference obtained on the right-hand side of the
interferometer shown in Fig. 2(d) of the main text – is also
almost independent of k.
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