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Dirac electrons and domain walls: A realization in junctions of ferromagnets
and topological insulators
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We study a system of Dirac electrons with finite density of charge carriers coupled to an external electromagnetic
field in two spatial dimensions, with a domain wall (DW) mass term. The interface between a thin-film ferromagnet
and a three-dimensional topological insulator provides a condensed-matter realization of this model, when an
out-of-plane domain wall magnetization is coupled to the topological insulator surface states. We show how, for
films with very weak intrinsic in-plane anisotropies, the torque generated by the edge electronic current flowing
along the DW competes with an effective in-plane anisotropy energy, induced by quantum fluctuations of the
chiral electrons bound to the wall, in a mission to drive the internal angle of the DW from a Bloch configuration
towards a Néel configuration. Both the edge current and the induced anisotropy contribute to stabilize the internal
angle, so that for weak intrinsic in-plane anisotropies DW motion is still possible without suffering from an
extremely early Walker breakdown.

DOI: 10.1103/PhysRevB.92.085416 PACS number(s): 75.78.Fg, 03.65.Vf, 85.75.−d, 73.20.−r

I. INTRODUCTION

Dirac fermions in two spatial dimensions have been the
object of intense study in recent times in the condensed-
matter world, especially since the experimental realization of
graphene [1–3] and, more recently, the discovery of three-
dimensional topological insulators (TI) [4–6], which host
Dirac fermions as topologically protected surface states. On
the other hand, magnetic DWs and their manipulation via
applied currents and electromagnetic fields hold a prominent
position in the field of spintronics, especially so since the
experimental realization of the “race-track” technology [7,8].

The search of efficient ways of moving a DW at the highest
possible velocities has become of capital importance. Manip-
ulation based on the application of external magnetic fields
[9–15], currents [16–22], and more recently magnons [23–29]
and electric fields [30,31] has been proposed and, with the
exception of magnonic manipulation, experimentally realized.
There is an upper limit on the DW velocity due to the
phenomenon known as Walker breakdown (WB) [9]. Above
a threshold applied current or magnetic field, the internal
structure of the DW, as described by its internal angle, becomes
unstable. The net velocity of the DW is limited by this
effect. As a consequence, the search of mechanisms that
can stabilize the internal angle of the DW has become an
important task [15,32]. In this regard, stabilization mediated by
Dzyaloshinskii-Moriya (DM) interactions [33,34] and Rashba
fields [35] has been explored and experimentally realized.

The appearance of three-dimensional TIs has focused
the interest on what we could call Dirac-fermion-mediated
ferromagnetism [36] and spintronics. The aspect of TIs that
makes them highly valuable for spintronic applications is that
the spin orientation of the surface electrons is fixed relative
to their propagation direction, so that the effects of spin-
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orbit coupling are maximal. For this reason, some proposals
[37–40] have suggested that TIs could possess more efficient
spin-orbit-induced torques than other materials previously
considered. Indeed, the strength of the spin-transfer torque per
unit charge-current density, exerted by the TI surface states
on the magnetization of an adjacent ferromagnetic permalloy
thin film, has recently been measured to be greater than for
any other spin-transfer source measured so far [41,42].

In this context it seems natural and promising to study
TIs coupled to ferromagnets [43–50] and specifically to DWs
[51–57]. If we couple a TI layer to an out-of-plane magnetized
ferromagnetic thin film containing a domain wall, the DW
acts as a mass for the surface electrons. It is a realization of a
system of Dirac fermions with a DW mass term. The theory
of this system coupled to electromagnetism was studied in a
field-theoretical context in Ref. [58]. These authors showed
how the 2n-dimensional anomaly of the chiral fermions living
in the DW is canceled by the anomaly due to the induced
2n + 1 topological mass term. This cancellation in three space-
time dimensions has been explicitly computed for fermions
coupled to an Abelian gauge field in Ref. [59], where the
technical difficulties that appear when trying to obtain the
effective action in the presence of a DW mass become apparent.

In this article, we obtain analytical expressions for the
effective action for an external electromagnetic field of a
system of Dirac fermions in two spatial dimensions, at a
finite density of charge carriers and with a DW mass term. We
look at a physical realization in junctions of three-dimensional
TIs and ferromagnets with out-of-plane easy-axis anisotropy
that host an out-of-plane DW. We show how the surface
electrons of the TI induce an effective in-plane anisotropy
energy, which stabilizes the DW in a Bloch configuration
even in thin ferromagnetic films where in-plane intrinsic and
dipolar (shape) anisotropies are relatively weak. Owing to
the stabilization of the internal angle, DW motion is possible
without suffering from a very early Walker breakdown.

We also show how equilibrium and nonequlibrium edge cur-
rents can be generated along the DW by applying, respectively,
a gate voltage (doping with electrons/holes) or an electric field.
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This current exerts a torque on the magnetization that drives
the internal angle from the Bloch configuration towards a Néel
configuration. We analytically compute the behavior of the
DW internal angle as a function of the chemical potential
and find it to qualitatively agree with a recent numerical
calculation [57]. Furthermore, this edge current contributes
to the stabilization of the internal degree of freedom of the
DW in a similar way as the DM interaction. It turns out that
the corresponding term in the effective action, although it is
first order in the magnetization, qualitatively resembles that
of an interfacial DM interaction. Here the DM interaction is
tunable, with the interaction strength given by the amount of
edge current flowing along the DW.

Our approach has the advantage that, since the calculation is
done at the microscopic level, the origin of the physics under-
lying the phenomenology can be traced and well understood.

II. EFFECTIVE ACTION

In this section, we present a calculation of the effective
action for the electromagnetic field coupled to a system of
Dirac electrons with a DW mass. Readers interested primarily
in the physics and phenomenology of ferromagnet-TI junctions
may skip to Sec. III.

Let us start from the action of 3d Dirac fermions (in the
following nd will be used for n-dimensional) coupled to an
external electromagnetic field:

S =
∫

d3x �̄
(
i lμνγ

ν(∂μ − ieAμ) − m − γ 0μ
)
� (1)

with the DW mass

m = m0σ tanh(x1/δ), (2)

where xμ = (x0,x1,x2), x0 is time, and σ = ±1 and δ are the
topological charge and the width of the DW, respectively, we
define �̄ = �γ 0, μ is the chemical potential, lμν is given by

lμν =
⎛
⎝1 0 0

0 v 0
0 0 v

⎞
⎠ (3)

and the gamma matrices satisfy the anticommutation relations
{γ μ,γ ν} = 2ημν . We work with a metric with signature (+,−,

−,−) and with � = c = 1. We consider the general case where
the velocity v is not necessarily equal to the speed of light c.

We obtain the effective action for Aμ up to second order
in the fields. The fermionic spectrum consists of a chiral
massless state bound to the DW plus massive extended states
(see Appendix A). If the DW is wide enough, massive bound
states also appear. The total number of bound states is given by
the largest integer less than λ + 1, with the parameter λ given
by

λ = m0δ

v
(4)

(see Appendix A). Let us consider the case where we have a
DW that is so steep that the only bound state is the chiral state
(λ � 1), so that we can do an enlightening separation. We can
consider the system as described by two theories, one 2d edge
theory, describing the chiral electrons localized near the DW
center, and one 3d bulk theory describing the massive extended

electrons. Each of these theories, considered in isolation, is
anomalous. The 2d chiral edge theory, on the one hand, is
well known to be chiral anomalous [60], while the anomaly
in the bulk theory is a consequence of the generation [via a
Chern-Simons (CS) term] of a topological mass of opposite
signs on either side of the DW. However, the anomalies cancel
via the Callan-Harvey mechanism [58], so that the complete
theory is anomaly free.

The perturbative calculation of the effective action would in
principle require computing the fermionic propagator from the
exact fermionic spectrum, and then performing the integration
of the fermionic degrees of freedom in the path integral. This
was done to second order in Aμ and for μ = 0 in Ref. [59]
as an explicit verification of the anomaly cancellation, but
these authors considered only the case m0 → ∞ and focused
exclusively on those terms that contain either two-dimensional
or three-dimensional antisymmetric tensors, which are the
terms relevant for the anomalies. The complete analytic
computation for finite m0 and μ remains a formidable task.

To make the calculation tractable, we must introduce a
number of approximations. First, we consider the adiabatic
limit, assuming a constant mass in the calculations and
restoring the x1 dependence at the end. This approximation
captures the bulk contribution (extended states) and is reliable
as long as the energy associated with the typical length of the
inhomogeneities in the mass is much smaller than the energy of
the extended states (∼m0). This means that the approximation
is asymptotically exact, but near the DW center it translates into
the condition v/δ � m0 which is never fulfilled if we consider
the case λ � 1. As a consequence, nonadiabatic corrections
will appear near the DW. Furthermore, even if the condition is
fulfilled, this approach cannot describe the contribution of the
bound states. Hence, as a second approximation, we add the
contribution of the chiral state, assuming λ � 1 to avoid further
computations for the contribution of the massive bound states.
As a third and final approximation, we compute nonadiabatic
corrections to the CS term of the bulk contribution. To
obtain these corrections, we impose gauge invariance and the
cancellation of the anomalies in the two theories (bulk-edge
correspondence).

A. Edge theory

Let us first compute the 2d edge effective action. From
the action of Eq. (1) and the fermionic spectrum obtained in
Appendix A, the classical action for the chiral mode can be
written as

SR,L =
∫

d3x ρ2
λ(x1) ψ

(0)∗
R,L(x0,x2)(i∂0 + eA0

+ σv(i∂2 + eA2) − μ)ψ (0)
R,L(x0,x2), (5)

where [see Eq. (A10)]

ρλ(x1) = B0(λ) coshλ+1(x1/δ)

× 2F1
[

1
2 ,λ + 1

2 , 1
2 ; − sinh2(x1/δ)

]
, (6)

with B0(λ) defined in Eq. (A15) and 2F1 the hypergeometric
function. When σ = −1 we have SR and when σ = 1 we
have SL.
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Before proceeding, we partially fix the gauge. Let us set

Aμ → θ (μ)(x1)Aμ(x0,x2), (7)

where θ (μ)(x1) is a given function of x1. The remaining gauge
freedom is given by

Aμ → Aμ + ∂μω, (8)

with ω �= ω(x1).

1. Equilibrium edge current

As a consequence of having a finite chemical potential,
when integrating out the chiral fermion in Eq. (5) the tadpole
terms do not vanish. This gives linear terms in the effective
action and an associated equilibrium (external electromagnetic
fields set to zero) chiral edge current density along the DW.
The linear terms can be computed from the tadpolelike term
(in imaginary time):

�eq = −ie

∫
d3x ρ2

λ(x1) (iA0 + σvA2)

×
∫

dq0dq2

4π2

1

q0 + σ ivq2 − iμ
. (9)

By multiplying and dividing by q0 − σ ivq2 + iμ the integral
in momenta can be rewritten as an even plus an odd part in q0.
The integration of the odd part vanishes, while the integration
over both momenta of the even part gives (going back to real
time)

�eq = − eμ

2πv

∫
d3x ρ2

λ(x1)(A0 + σvA2), (10)

so that we can define the equilibrium edge current density as

ja
eq = − eμ

2πv
ρ2

λ(x1)(1,σv). (11)

Here and from now on the Greek letters refer to dimensions
x0, x2: a = 0,2.

2. Chiral anomaly

The action of Eq. (5) is analogous to that of the 2d

chiral Schwinger model, which is well known to be chiral
anomalous [60], so that the gauge symmetry at the quantum
level is broken. Integrating out the chiral fermionic degrees of
freedom in Eq. (5) up to second order in the electromagnetic
field we get (using dimensional regularization) [60]

�anomaly = 1

4πv

∫
dx1dx ′

1ρ
2
λ(x1)ρ2

λ(x ′
1)

×
∫

dx0dx2 Aa(x0,x1,x2)

(
ηab − ∂a∂b

∂2

− σ

2∂2
(εcb∂a∂c − εad∂d∂

b)

)
Ab(x0,x

′
1,x2), (12)

where ∂a = (∂0,v∂2), Aa = (A0,vA2), and ∂2 = ηab∂a∂b. Note
that chemical potential does not play a role here, and
there are two reasons for this to happen. First for massless
(nonchiral) 2d fermions the theory at finite charge density is
indistinguishable to that at zero density. Second, the chiral
anomaly is well known to be insensitive to chemical potential
and temperature [61,62]. However, as we obtained in Eq. (10)

finite μ plays a role at first order in Aμ for chiral 2d fermions.
The effect is equivalent to applying a chiral chemical potential
to nonchiral and massless fermions, which activates the chiral
magnetic effect in 2d generating an equilibrium current density
analogous to that of Eq. (11).

Finally, from Eq. (12) we can obtain the nonequilibrium
edge current density:

ja
ne = −σ

e2

2π
ρ2

λ(x1)
∫

dx ′
1
ρ2

λ(x ′
1)E2(x0,x

′
1,x2)

∂0 + σv∂2
(1,σv), (13)

with E2 = ∂0A2 − ∂2A0 the electric field in the x2 direction.

B. Bulk theory

To obtain the bulk contribution we will assume a constant
mass for the fermions, restoring the x1 dependence at the
end of the calculations in what basically is an adiabatic
approximation, as we mentioned before. This way we have
3d Dirac fermions with a mass term that breaks time reversal
symmetry. This system is well known to give a topological
response under an external electromagnetic field in the form
of a CS term [63,64].

To proceed we can always split the effective action into
vacuum (μ = 0) and matter (μ �= 0) contributions, so that the
matter contribution is zero at zero density:

�bulk = �0 + �matt, (14)

with

�0,matt = 1

2

∫
d3x Aμ�

μν

0,mattAν, (15)

where Aμ = (A0,vA1,vA2) and where �μν is the polarization
function. Doing this separation all ultraviolet divergences
appear in the vacuum part, while the matter part remains finite.

1. Vacuum contribution

To be consistent with the calculations done for the edge
theory, we will use dimensional regularization to treat the
ultraviolet divergences. The computation of the one-loop
polarization function for μ = 0 is straightforward. Separating
it into it’s even and odd parts

�
μν

0 = �
μν

0,e + �
μν

0,o (16)

and doing the computation we obtain

�
μν

0,e = e2|m|
12πv2

(
∂2

m2
+ O

(
∂4

m4

))(
ημν − ∂μ∂ν

∂2

)
, (17)

�
μν

0,o = −e2 sgn(m)

4πv2
εμρν∂ρ

(
1 + O

(
∂2

m2

))
, (18)

with m = m0σ tanh(x1/δ). Here ∂μ = (∂0,v∂1,v∂2) and ∂2 =
ημν∂μ∂ν . Note that we presented the results as the first terms in
a derivative expansion, which will be useful later on when we
treat the physical system. This expansion is justified in the low
energy regime p2 � m2, breaking down when m2 � p2. If
p2 � m2

0 it turns out that this breakdown occurs in the region
near the DW where the adiabatic limit is no longer reliable.
Hence the validity of the derivative expansion coincides with
the validity of the adiabatic approximation.
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Now let us look at the gauge variation of the full theory
(edge plus bulk). The gauge variation of the edge theory
[Eq. (12)] is

δ� = σe2

4π

∫
d3x ωρ2

λ(x1)E2, (19)

which should be canceled by the gauge variation of the CS
term [Eq. (18)] so that the theory is gauge invariant. This is
not the case if E2 is a function of x1. The reason is that, while
the nature of the edge theory is totally nonadiabatic, the bulk
theory has been computed in the adiabatic approximation. To
cure this issue, we write the CS term as

�
μν

0,o = −e2σFλ(x1)

4πv2
εμρν∂ρ (20)

so that the nonadiabatic term Fλ(x1) is fixed by imposing the
anomaly cancellation. This is done in Appendix B, where the
explicit form of Fλ(x1) can be found.

2. Matter contribution

The computation of the matter contribution is more in-
volved. We again do the separation:

�
μν
matt = �

μν
matt,e + �

μν
matt,o. (21)

The even part is computed in Appendix C, where adding both
vacuum and matter contributions we get

�00
e = −θ (m2 − μ2)

e2|∂|2
12π |m| + θ (μ2 − m2)

e2(|μ| − |m|)
2πv2

,

(22)

�0i
e = �i0

e = θ (m2 − μ2)
e2∂0∂i

12πv|m| , (23)

�ij
e = −θ (m2 − μ2)

e2∂2

12πv2|m|
(

δij + v2∂i∂j

∂2

)
. (24)

Some approximations have been done to arrive at these
expressions. First, we are in both the adiabatic and the low
energy limits. Second, the result is obtained by adding the
polarization functions computed in both the static (p0 → 0)
and the long wavelength (p → 0) limits. As explained in
Appendix C, this means that within our approximations
nonlocal terms which are constant in the limit p0 → 0 and
zero in the limit p → 0 are being approximated by the constant
term in �00

e . Third, we assume that in the static limit the
spatial momentum |p| is smaller than the Fermi momentum
pF . This is generally true at low energies, except when the
Fermi energy |μ| is above but very close to the value of |m0|,
so that pF is very small. In this situation some corrections
which are highly nonlocal would contribute. And fourth, we
neglect dynamical contributions which are nonlocal (inverse
powers in the spatial momentum), which we believe will not
have an appreciable effect in the description of the physical
system, as we acknowledge in Appendix D 2.

To complete the bulk part of the effective action let
us turn our attention to the odd part of the polarization
function, this is to the matter correction to the CS term. The
calculation is straightforward and we obtain (vacuum plus

matter contributions)

�μν
o = − e2

4πv2

(
σFλ(x1) θ (m2 − μ2)

+ m

|μ|θ (μ2 − m2)

)
εμρν∂ρ. (25)

Note that all the nonadiabaticity is encoded in Fλ(x1), whereas
no nonadiabatic corrections have been computed for μ2 > m2.
The reason is that corrections in this last case cannot be
computed as we did for μ2 < m2, as the anomaly cancellation
cannot be invoked. The gauge noninvariance of the CS term
for μ2 > m2 cannot be canceled by the chiral anomaly, which
is insensitive to the chemical potential (and temperature
T ) [61,62]. Furthermore, for finite μ and/or T there appear
infinitely many terms in the perturbative series (in Aμ) that
break gauge invariance in the presence of a boundary (or a
DW mass as in our case). These terms are parity breaking (the
CS is the lowest order of this terms), and in the presence of
a boundary are gauge invariant for zero μ and T (the only
exception to this is the CS term) and gauge noninvariant for
finite μ and/or T (see [65] for a computation of the next order
parity breaking term for finite T ). Therefore, gauge invariance
can only be restored at the nonperturbative level when all the
terms in the perturbative series are summed up, in a similar
way as occurs with large gauge invariance in the theory with
no boundaries [66–68].

III. JUNCTION OF A FERROMAGNET AND A
TOPOLOGICAL INSULATOR

Let us now look at a condensed-matter realization of the
theory of Sec. II. We will take a thin film of a ferromagnet and
place it on top of a three-dimensional TI. The action for the
ferromagnet is (we restore � for the rest of the main text)

SFM = d

∫
dt dx dy

(
Ms

γ
φ̇(cos θ − 1) − HFM

)
, (26)

which is the sum of the Berry phase term (“kinetic energy of
spin precession”) plus the Hamiltonian:

HFM = 1

2

[
A

(∣∣∣∣∂m
∂x

∣∣∣∣
2

+
∣∣∣∣∂m
∂y

∣∣∣∣
2)

− Km2
z + K⊥m2

x

]
(27)

(see for example [69,70]). Here d is the film thickness,
γ = μBge/� the gyromagnetic ratio (ge = 2), Ms the sat-
uration magnetization, A the exchange constant (exchange
energy per unit length), and K and K⊥ the easy axis
and hard axis anisotropy constants (anisotropy energy
per unit volume). The magnetization unit vector is m =
(sin θ cos φ, sin θ sin φ, cos θ ). It relates to the total mag-
netization as M = �γ m/a3 = Ms m (where a is the lattice
constant) and couples to the spin of the surface electrons of
the TI insulator via an exchange interaction.

The action for the TI surface electrons, including the
coupling to the magnetization, takes the standard form

STI =
∫

dt dx dy �†(i�∂0 − HTI − μ)�, (28)
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with

HTI = vF ẑ · (i(�∇ − ieA) × σ )

±�xymxy · σ xy ± �zmzσz − eA0, (29)

where the surface of the TI is taken to be in the z = 0 plane, and
where we have defined the density to be zero at half-filling. �xy

and �z are the in-plane and out-of-plane exchange couplings
respectively (both are definite positive); vF is the Fermi veloc-
ity of the electrons; m = (mx,my,mz) = (mxy,mz) and σ =
(σx,σy,σz) = (σ xy,σz); Aμ = (A0,A) and the signs + and −
correspond to antiferromagnetic and ferromagnetic exchange
couplings, respectively. STI can be written as Eq. (1) [with the
representation for the � matrices given by (A2)] setting xμ =
(t,x,y), v = vF , m = ±�zmz, and doing the substitution:
eAμ → eaμ = (eA0,eAx ± �xymy/vF ,eAy ∓ �xymx/vF ).

The Hamiltonian (27) supports a nontrivial minimum
energy configuration in the form of the well known Bloch
DW:

θ0 = 2 arctan(eσx/δ), φ0 = ±π/2, (30)

where δ = √
A/K and σ = ±1 are the width and the topolog-

ical charge of the DW, respectively. This is valid if K⊥ �= 0,
while if K⊥ = 0 the vacuum would be degenerate and φ0

could take any value. This configuration gives the equilibrium
magnetization:

m(0) = (sech(x/δ) cos φ0,sech(x/δ) sin φ0,σ tanh(x/δ)).

(31)

We will work with fluctuations around the equilibrium con-
figuration: θ (t,x) = θ0(x) + θ̃ (t,x) and φ(t,x) = φ0 + φ̃(t,x),
giving the total magnetization:

m = (sin θ cos φ, sin θ sin φ,σ tanh(x/δ) + m̃z), (32)

with m̃z = cos θ − cos θ0. Note that we have imposed the
magnetization to be homogeneous in the y direction.

The gauge fixing condition given by Eq. (7) has now to be
fulfilled by the effective vector potential aμ. We fix the gauge:

ea0 = −eExx − eEyy, (33)

eax = ±�xymy(t,x)/vF , (34)

eay = ∓�xymx(t,x)/vF , (35)

with

mx(t,x) = sin(θ0(x) + θ̃ (t)) cos φ(t), (36)

my(t,x) = sin(θ0(x) + θ̃ (t)) sin φ(t), (37)

where we have chosen an electrostatic configuration of
the electromagnetic field (Ex,y are constants). Since the x

dependence of mxy has been fixed, the fluctuations can only
be functions of t . To obtain an effective action for x dependent
fluctuations we have to relay on the adiabatic approximation,
restoring the x dependence at the end. For the adiabatic
approximation to be valid the wavelength of the spin waves
lsw in the x direction has to be much bigger than the typical
wavelength of the surface electrons lel = �vF /�z. Assuming
the parameter λ = �zδ/(�vF ) introduced in Eq. (4) that defines

the number of existent bound surface states (see Appendix A)
to be λ ∼ 1, we have lsw  δ.

This way, we have “almost” a completely analogous theory
for the fermionic sector to that in the previous section,
but now for the effective electromagnetic field aμ. We say
almost because in addition we have an extra field m̃z with
which we have to deal. Before proceeding, let us fix the
values of the parameters. We set (the MI parameters are
obtained from [71]) d = 3 nm, Ms = 3 × 105 A/m, A =
10−11 J/m, K = 2 × 105 J/m3, vF = 5 × 105 m/s, and �z =
�xy = 30 meV, so that δ ≈ 7.07 nm and λ = 0.672. We will
assume a very small perpendicular anisotropy K⊥, so that it
can be neglected compared to the effective anisotropy induced
by the TI surface electrons (see next two paragraphs and
Appendix D).

The computation of the effective action for the magne-
tization is done in Appendixes D and E, relaying on the
calculations of Sec. II. The total action reads

� = SFM + �TI, (38)

with

�TI =
∫

dt dx dy

{
�xys · mxy − dδ

2
Keff

⊥

×
∫

dx ′mx(t,x)ρ2
λ(x)ρ2

λ(x ′)mx(t,x ′)
}

(39)

and where the spin density s is

s = σρ2
λ(x)

hvF

(μ − e�V (y))x̂

+ e

2hvF

(
σFλ(x)θ

(
�2

z tanh2(x/δ) − μ2
)

+ σ�z tanh(x/δ)

|μ| θ
(
μ2 − �2

z tanh2(x/δ)
))

E. (40)

Here �V (y) = V (y) − V (−L/2) is the voltage between y =
−L/2 and a given point y along the DW, with V (y) = −Eyy,
and L and y = ±L/2 the length and the end points of the wall,
respectively. The effective hard axis anisotropy constant Keff

⊥
is

Keff
⊥ = �2

xy

dδhvF

≈ 3.49 × 103 J/m3 (41)

and the functions ρλ(x) and Fλ(x) are given by Eqs. (6), (B4),
and (B5), respectively. Remember that the parameter λ is given
by [see Eq. (4)]

λ = �zδ

�vF

. (42)

It is important to note also that the spin density is related to
the electromagnetic current density as j = ±evF s × ẑ.

From Eqs. (39) and (40) we see that there is a spin density
that couples to the magnetization, which is related to (1)
[term proportional to x̂ in Eq. (40)] the edge equilibrium
and nonequilibrium currents flowing along the DW, given by
Eqs. (11) and (D5), respectively, and (2) [term proportional to
E in Eq. (40)] the topological current due to the anomalous
quantum Hall effect in the bulk, coming from the Chern-
Simons term (25). Besides the spin density there is a nonlocal
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FIG. 1. (Color online) Schematics of a possible experimental
setup. The ferromagnetic thin film (green) is deposited on top of
the TI (blue), which itself is deposited on top of a gate. Pink and
blue thick arrows represent the out-of-plane magnetization pointing
up and down, respectively. A voltage �V is measured between the
electrodes (yellow) at the flanks of the TI. The edge current Iedge

flowing along the DW is represented by the black arrow connecting
both electrodes.

contribution induced by the chiral electrons bound to the DW,
which acts as a hard axis effective anisotropy energy in the
direction perpendicular to the wall.

Although a interfacial DM interaction term of the form m ·
∇mz is not induced, as argued in Appendix E, the spin density
related to the edge current generates a term that resembles it:

�xy

σρ2
λ(x)

hvF

(μ − e�V (y))x̂ · mxy. (43)

For more clarity, in the special case λ = 1 we can write this as

�xy

μ − e�V (y)

2hvF

mxy · ∇m(0)
z , (44)

while for different values of λ small deviations from ∇m(0)
z

take place. The strength of this “pseudo” DM interaction can
be tuned by doping with electrons/holes and by the application
of a voltage between both end points of the DW. Note, however,
that this term is first order in the magnetization, while the DM
interaction is second order.

In Fig. 1 we show the schematics of a possible experimental
setup. A thin ferromagnetic film hosting a DW is deposited on
top of a TI, which itself is deposited on top of a gate. Two
electrodes are attached to the flanks of the TI such that a
voltage between both edges is applied, and the gate is used
to tune the chemical potential in the TI. A similar setup was
realized in Ref. [72], where the TI was used as the channel of
a field effect transistor.

IV. PHENOMENOLOGICAL RESULTS

Now that we have the effective action we can study the
phenomenology. We will compute the chirality of the wall
in it’s equilibrium configuration at finite density and under
applied external electric fields. We will also look at the current

induced dynamics when a current is applied through the
ferromagnet.

A. Equilibrium configuration of the DW

We want to look at minimum energy configurations of
the total effective action given by Eqs. (38) and (39) of
the type m = (sech(x/δ) cos φ,sech(x/δ) sin φ,σ tanh(x/δ)).
In principle φ will be a function of x; however, to simplify
things we will assume φ to be constant. This will give an
average equilibrium value of φ(x).

From the spin density of Eq. (40) we see that an applied
electric field in the x direction will not change the average chi-
rality of the wall, since it contributes with terms antisymmetric
in x which will vanish when integrated. Contrarily, a voltage
in the y direction has a nonvanishing effect on the average
chirality through the (nonequilibrium) edge current that is
generated [term proportional to the voltage in Eq. (40)]. This
adds up to the effect of doping the system with electrons/holes,
which generates a further (equilibrium) contribution to the
edge current [term proportional to the chemical potential in
Eq. (40)].

Then at finite density and under an applied voltage in the
y direction we obtain the potential energy for the DW (after
integration in x and y):

E(φ) = L�xyC2

hvF

(
−C1 cos φ + �xyC2

2
cos2 φ

)
, (45)

with

C1 = σμ − e�V

2
, (46)

C2 = −2i
B−1(1/2 + λ, − 2λ)

B−1(λ,1 − 2λ)
, (47)

where �V = V (L/2) − V (−L/2) is the voltage between both
end points of the DW, B is the incomplete Beta function [see
Eq. (A16)], and λ is given in Eq. (42). Here C1 can take
negative values, while C2 is real and always positive and
fulfills limλ→∞ C2 = 1. For |C1| < �xyC2 the energy has a
minimum at φ = arccos(C1/(�xyC2)). On the other hand, for
|C1| � �xyC2 the minimum energy configuration is φ = 0
for C1 > 0 and φ = π for C1 < 0. So at C1 = 0 we have a
Bloch DW (φ = ±π/2), and as |C1| increases φ is shifted
until |C1| = �xyC2, at which point the DW stabilizes in a
Néel configuration, with φ = 0 for positive C1 and φ = π for
negative C1 (see Fig. 2). This way the chirality of the DW can
be tuned by the chemical potential (applying a gate voltage)
and the electric field (appliying a voltage between both end
points of the DW). Based on this mechanism, there is a way
to switch between the two degenerate vacua φ = ±π/2 using
an out-of-plane magnetic field to break the degeneracy of the
vacuum. It was described in Ref. [55], where they made use
of an electric field to tune the chirality through the mechanism
explained above, while here we have shown that it can be done
also by applying a gate voltage.

To be specific let us choose the topological charge to be
σ = +1 and switch off the electric field. For the parameters
introduced in Sec. III λ takes the value λ = 0.672, so that
we have C1 = μ, C2 ≈ 0.706. For |μ| < 0.706�xy we get
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FIG. 2. Equilibrium value of the internal angle φ as a function
of the chemical potential and the voltage, for a λ parameter value of
λ = 0.672.

φ = arccos(μ/(0.706�xy)), while for |μ| � 0.706�xy we get
φ = 0 for positive μ (TI doped with electrons) and φ = π for
negative μ (TI doped with holes). This behavior qualitatively
reproduces the results obtained numerically in Ref. [57]. The
physical explanation lies in the competition of the torque
generated by the chiral edge current on the magnetization and
the effective hard axis anisotropy energy, which is also induced
by the TI chiral surface electrons.

B. Current induced magnetization dynamics

We will now apply a current through the ferromagnet in
the direction perpendicular to the DW. By doing so we are
assuming the ferromagnet to be a metal, which would in
principle pin the Fermi level so that the possibility of tuning
the chemical potential of the surface states with a back gate
is questionable. In such a case chemical doping of the sample
could be necessary to tune the Fermi level, as was done in
Refs. [41,42].

In terms of the collective coordinates X(t) and φ(t), where
X defines the position of the DW, we can write the total
effective action as

� =
∫

dt

(
N�

Ẋ

δ
φ + LC2�xyIedge

evF

cos φ

− LC2�xyI
∗
edge

evF

cos2 φ − Telφ − FelX

)
, (48)

where N = 2dδL/a3 is the number of spins in the DW and
the currents Iedge and I ∗

edge are

Iedge = e

h

(
σμ − e�V

2

)
, (49)

I ∗
edge = C2

e�xy

2h
≈ 4.10 × 10−7A. (50)

Note that 2I ∗
edge is the threshold current at which the DW is

completely of Néel type. Regarding Tel and Fel , they represent

the spin-transfer torque and the force generated by the current
on the wall, respectively [69,70]:

Tel = �

e
Is, Fel = �

eδ
βIs, (51)

where Is = I↑ − I↓ is the applied spin current through the
ferromagnet in the positive x direction, and the β term is a
constant that depends on the microscopic properties of the
ferromagnet. It can be quite large for perpendicular anisotropy
thin films, where the force from electron reflection can be
dominant [70], so following the reference we will fix it to be
β = 0.3.

Now we can write the equations of motion (we include
Gilbert damping):

eN
(

Ẋ

δ
− αφ̇

)
= LC2

�vF

(Iedge sin φ − I ∗
edge sin 2φ) − Is,

(52)

eN
(

φ̇ + α
Ẋ

δ

)
= −βIs, (53)

where α is the Gilbert damping parameter, which we will set
to be α = 0.01. From the previous expressions we can obtain
a differential equation for φ:

φ̇′ = − js

j ∗
s

+ sin 2φ − Iedge

I ∗
edge

sin φ, (54)

where Is = dLjs , I ∗
s = dLj ∗

s , and

φ′ = 1 + α2

αa3C2
2

4�

Keff
⊥

φ, (55)

j ∗
s = eδC2

2

2�
Keff

⊥

(
β

α
− 1

)−1

≈ 3.39 × 108 A/m2. (56)

For vanishing edge current Iedge (μ = 0 and �V = 0) the
DW moves with a time-averaged terminal velocity 〈Ẋ〉 =
−βδIs/(eαN ) as long as the current flowing through the
ferromagnet is smaller than the critical current I ∗

s . When Is

reaches the value I ∗
s however, Walker breakdown (WB) occurs

and φ starts to change, so that the averaged terminal velocity
decreases as Is increases (see, for example [70]). Thus to obtain
high velocities it is important to stay in the non WB regime,
which means that one should look for the biggest possible
I ∗
s . We see that it’s value is proportional to �2

xy , so that the
bigger the exchange coupling the higher the velocities that
can be achieved. For the actual values of the parameters a
velocity 〈Ẋ〉 ≈ 1.86 m/s is achieved for an applied current
density js = j ∗

s , which is not fast for practical applications.
However, if one could achieve an increase of �xy of one order
of magnitude (�xy ∼ 0.3 eV) the average maximum velocity
would increase by two orders of magnitude: 〈Ẋ〉 ≈ 186 m/s.
Although this is promising, such high values of the exchange
coupling are of the order of the bulk gap of typical TIs, and
are not achievable at the moment.

There is a nice way to stabilize the chirality of the DW
so that WB is delayed. It was first suggested in Ref. [55],
where an electric field was needed, and afterwards in Ref. [56],
where it was shown that a similar effect could be achieved
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FIG. 3. Density plot of 〈φ̇′〉 in the Iedge/I
∗
edge − js/j

∗
s plane.

Values 〈φ̇〉 < 0 (WB) occur in the dark region, while in the light
region 〈φ̇〉 = 0 (no WB). The frontier between the two regions gives
the maximum values of js before WB occurs.

in equilibrium. The chirality stabilization is mediated by the
edge current through the third term of the right-hand side of
Eq. (54). We plot in Fig. 3 the values of js at which WB occurs
for different values of the edge current Iedge. In comparison
with [55,56] here it can be seen that DW stabilization can be
tuned not only by applying an electric field, but also by doping
the TI with electrons or holes. Depending on the competition
of the equilibrium and nonequilibrium edge currents the effect
can be neutralized or enhanced.

These results show that by using a TI, ferromagnets with
very weak hard axis anisotropy could still be suitable for
hosting DW motion without suffering from a very early WB.
Furthermore by the application of an edge current, the terminal
velocity can be significantly increased.

V. CONCLUSIONS

We have analytically computed an approximate effective
action up to second order in the electromagnetic field, for a
system of Dirac electrons in two spatial dimensions at finite
density and with a DW mass term. We have presented a
condensed-matter realization of this system, consisting on a
ferromagnet hosting a DW (with out-of-plane magnetization
domains) coupled via an exchange interaction to the TI surface
electrons. There are three relevant contributions to the effective
action coming from quantum fluctuations of the fermionic
surface states

(i) The first one is linear in the magnetization, which couples
to a spin density in the perpendicular direction to the DW. This
spin density is related to the edge current of chiral electrons
flowing along the DW, which itself can be seen as made of two
pieces: an equilibrium current proportional to the chemical
potential and a nonequilibrium current proportional to the
applied voltage between both end points of the DW.

(ii) The second contribution is again linear in the magne-
tization, but now the spin density to which it is coupled is
proportional to and has the direction of the applied electric
field, and is of opposite signs to either side of the DW. It is
related to the topological current generated by the anomalous
quantum Hall effect in the bulk.

(iii) The last contribution is a nonlocal term quadratic in
the magnetization, induced by the chiral electrons, and which
acts as an effective hard axis anisotropy energy in the direction
perpendicular to the DW.

The competition of the torque exerted by the edge current
(first contribution) and the effective hard axis anisotropy
energy (third contribution) explains the behavior of the
chirality of the DW as the chemical potential and/or the
voltage between both end points of the wall are modified.
The stabilization of the internal angle through the induced
effective hard axis anisotropy allows for the motion of the DW
with velocity proportional to the applied current through the
ferromagnet, especially in the case of ferromagnetic thin films
with very weak in-plane anisotropy, which other ways would
suffer of a very early WB. The critical current at which WB
occurs is proportional to the effective anisotropy energy, which
itself is quadratic in the exchange coupling, so that increasing
the value of the exchange coupling would result in a significant
increase of the maximum possible DW velocity.

Finally, the edge current flowing along the DW has an
interesting effect on the wall dynamics. It further stabilizes
the internal angle of the DW, which translates in a delay of the
appearance of WB. This means the maximum DW velocity
can be increased by doping the system with electrons or holes
and/or applying a voltage between both end points of the DW.
The two effects can be combined so that the edge current is
further increased and the WB further delayed.
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APPENDIX A: FERMIONIC SPECTRUM

To obtain the fermionic spectrum, we will treat the gauge
field as a perturbation and think of the remaining theory
[Eq. (1)] as a free theory. For the free theory, the equations
of motion can be obtained from Eq. (1) for vanishing
electromagnetic field:

γ 0
(
i lμν γ ν∂μ − m

)
� = 0. (A1)

Let us take the following representation for the γ matrices:

γ 0 = σ 3, γ 1,2 = −i σ 1,2 (A2)

and write the bispinor � in the basis

�R,L = eip0x0eip2x2 �R,L(x1)uR,L, (A3)

with

uR = 1√
2

(
1
1

)
, uL = 1√

2

(
1

−1

)
, (A4)

so that � = �R + �L. With this representation and in this
basis, rewriting the first order coupled equations (A1) as
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second order decoupled ones we get(
∂2

1 + λ(λ − σ )

δ2
sech(x1/δ)

)
�R =

(
λ2

δ2
+ p2

2 − p2
0

v2

)
�R,

(A5a)(
∂2

1 + λ(λ + σ )

δ2
sech(x1/δ)

)
�L =

(
λ2

δ2
+ p2

2 − p2
0

v2

)
�L,

(A5b)

with λ = m0δ/v. This is nothing but the Schrödinger equation
in a modified Poschl-Teller potential (see, for example [73]).
Let us write p2

0 = v2k2 + v2p2
2 + m2

0, so that the eigenvalues
of Eqs. (A5a) and (A5b) are −k2. The general solutions of
these equations are [73]

�R(σ,x1) = coshλ+ 1−σ
2 (x1/δ)

{
B(λ) 2F1

×
[
a + 1 − σ

4
,b + 1 − σ

4
,
1

2
; − sinh2(x1/δ)

]

+ iC(λ) sinh(x1/δ) 2F1

[
a + 1 − σ

4
+ 1

2
,b

+ 1 − σ

4
+ 1

2
,
3

2
; − sinh2(x1/δ)

]}
(A6)

and �L(σ,x1) = �R(−σ,x1). Here B(λ) and C(λ) are arbitrary
constants, 2F1 is the hypergeometric function, and the values
of a and b are

a = 1
2 (λ + iδk), b = 1

2 (λ − iδk). (A7)

Note that the first term of the right-hand side of Eq. (A6) is
even in x1 while the second term is odd. For k2 > 0 we have the
continuum of extended states, the general solution of which is
precisely given by Eq. (A6). On the other hand, for k2 < 0 the
solutions are bound to the wall, vanishing at ±∞ [73], and the
energies are quantized.

Let us have a close look at the bound states. If we set
k → ik we obtain the following conditions for the solutions to
be normalizable (for σ = −1):

�R −→ δk = λ − 2n,

�L −→ δk = λ − 1 − 2n
(A8)

for the even part of Eq. (A6) and

�R −→ δk = λ − 1 − 2n,

�L −→ δk = λ − 2 − 2n
(A9)

for the odd part, where n = 0,1,2, . . . (for σ = 1 one just
has to interchange the chiralities: �R,L → �L,R). From these
normalizability conditions and the general solution of Eq. (A6)
we can obtain the bound states. For σ = −1 we have

n = 0

{
�

(0)
R = B0(λ) coshλ+1(x1/δ)2F1

[
1
2 ,λ + 1

2 , 1
2 ; − sinh2(x1/δ)

]
,

�
(0)
L = 0,

(A10)

n = 1,3,5, . . .

{
�

(n)
R = iCn(λ) coshλ+1(x1/δ) sinh(x1/δ) 2F1

[
an + 1,bn + 1, 3

2 ; − sinh2(x1/δ)
]
,

�
(n)
L = Bn(λ) coshλ(x1/δ) 2F1

[
an + 1

2 ,bn + 1
2 , 1

2 ; − sinh2(x1/δ)
]
,

(A11)

n = 2,4,6, . . .

{
�

(n)
R = Bn(λ) coshλ+1(x1/δ) 2F1

[
an + 1

2 ,bn + 1
2 , 1

2 ; − sinh2(x1/δ)
]
,

�
(n)
L = iCn(λ) coshλ(x1/δ) sinh(x1/δ) 2F1

[
an + 1,bn + 1, 3

2 ; − sinh2(x1/δ)
]
,

(A12)

with:

an = n

2
, bn = λ − n

2
(A13)

and with energies p0 = −σvp2 for n = 0 and

p0 = ±
√

m2
0

λ2
n(2λ − n) + v2p2

2 (A14)

for n �= 0 (again, to obtain the solutions for σ = 1 one just has
to interchange the chiralities). There is a maximum n before
k2 is positive again: N < λ. Then we see that the number of
bound states is given by the largest integer less than λ + 1.
Regarding the constants Bn and Cn, we impose the solutions
to be normalized and obtain for the chiral state n = 0:

B0(λ) =
√

(−1/4)λ

δB−1(λ,1 − 2λ)
, (A15)

where Bz(a,b) is the incomplete Beta function and can be
written as

Bz(a,b) =
∫ z

0
ta−1(1 − t)b−1dt. (A16)

Finally, we can decompose the fermionic field as follows
(for σ = −1):

� =
N∑

n=0

�
(n)
R (x0,x2)�(n)

R (x1) +
N∑

n=1

�
(n)
L (x0,x2)�(n)

L (x1)

+
∫

dk
(
�

(k)
R (x0,x2)�(k)

R (x1) + �
(k)
L (x0,x2)�(k)

L (x1)
)
,

(A17)

with

�
(n,k)
R,L (x0,x2) = ψ

(n,k)
R,L (x0,x2)uR,L. (A18)

Again for σ = 1 one should interchange the chiralities. The
summation is over the bound states and the integral is over the
continuum of extended states.
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APPENDIX B: NONADIABATIC CORRECTION
TO THE CS TERM

Let us write the CS term as

�
μν

0,o = −e2σF (x1)

4πv2
εμρν∂ρ. (B1)

To find the nonadiabatic correction F (x1) we should impose
the anomaly cancellation. The gauge variation of the edge
theory [Eq. (19)] has to be canceled by the gauge variation
of the CS term. With this condition we get the differential
equation for F :

∂ 1F (x1) = 2ρ2
λ(x1). (B2)

There is another condition F should fulfill:

lim
x1→±∞ F (x1) = ±1, (B3)

so that in the asymptotic limit Eq. (18) is recovered. Then F

can be computed to be

Fλ(x1) = −δB2
0 (λ)sgn(x1)Im

[
B−y2

(
1
2 − λ, 1

2

)]
(B4)

as long as λ �= 1/2,3/2,5/2 . . ., with y = cosh(x1/δ) and B
the incomplete Beta function defined in Eq. (A16). For half
integer λ we get

F1/2(x1) = 4δB2
0

(
1

2

)
arctan

(
tanh

(
x1

2δ

))
,

F3/2(x1) = δB2
0

(
3

2

)[
2 arctan

(
tanh

(
x1

2δ

))

+ sech

(
x1

δ

)
tanh

(
x1

δ

)]
,

F5/2(x1) = δ

4
B2

0

(
5

2

)[
6 arctan

(
tanh

(
x1

2δ

))

+ sech

(
x1

δ

)(
3 + 2 sech

(
x1

δ

)2)
tanh

(
x1

δ

)]
... (B5)

APPENDIX C: EVEN PART OF THE MATTER
CONTRIBUTION IN THE BULK THEORY

The matter contribution to the polarization function in the
bulk can be written as a sum of an even plus an odd part:

�
μν
matt = �

μν
matt,e + �

μν
matt,o. (C1)

The even part is a symmetric second rank tensor. Assuming
rotational invariance, the most general tensor of this type can
be constructed as a linear combination of ημν , pμpν , uμuν ,
and pμuν + pνuμ, where uμ = (1,0,0) defines the rest frame
of the system (see, for example [74]). Imposing transversality
[pμ�

μν
matt,e(p) = 0] we obtain the general form for the even

contribution:

�
μν
matt,e(p) = G1

(
ημν − pμpν

p2

)
+ (G1 + G2)P μν

⊥ , (C2)

with P 00
⊥ = P 0i

⊥ = P i0
⊥ and

P
ij

⊥ = δij − pipj

|p|2 (C3)

and where G1 and G2 are scalar functions of p0 and |p|. In the
vacuum there is no preferred rest frame, so uμ can not appear.
In that case, the even part of the polarization function must be
proportional to ημν − pμpν/p2 which implies G1 = −G2.

To simplify the computation we will treat the static limit
(p0 = 0) and long wave limit (p = 0) separately. In the static
limit we have

�00
matt,e = G1(p0 = 0), �0i

matt,e = �i0
matt,e = 0,

(C4)

�
ij
matt,e = G2(p0 = 0)

(
δij − pipj

|p|2
)

.

The calculation of G1 and G2 has been done in the context of
massive graphene [75]. The only difference with the present
case is that in graphene there is a multiplicative factor of
4 that counts the two valleys and the spin degeneracy. We
should note that computations for graphene are done with
cutoff regularization, which actually breaks gauge invariance.
However, the matter part is finite and independent of the
regularization, so results [75] can directly be imported as long
as the degeneracy is set to 1. In the static limit we have

G1(p0 = 0) = e2 θ (|μ| − |m|)
v2

[
−|m|

4π
+ |μ|

2π
− |μ|

4π

√
1 − 4 p2

F

v2|p|2 θ (|p| − 2pF )

− v2|p|2 − 4m2

8πv|p|
(

arccos

(
2|m|√

v2|p|2 + 4m2

)
− arccos

(
2|μ|√

v2|p|2 + 4m2

)
θ (|p| − 2pF )

)]
, (C5)

G2(p0 = 0) = e2 θ (|μ| − |m|)
v2

[ |m|
4π

− |μ|
4π

√
1 − 4 p2

F

v2|p|2 θ (|p| − 2pF )

+ v2|p|2 − 4m2

8πv|p|
(

arccos

(
2|m|√

v2|p|2 + 4m2

)
− arccos

(
2|μ|√

v2|p|2 + 4m2

)
θ (|p| − 2pF )

)]
, (C6)

where the Fermi momentum is defined as vpF =
√

μ2 − m2.
In configuration space, restoring the x1 dependence of m we

have vpF =
√

μ2 − m2
0 tanh(x1/δ)2. When |μ| > m0 we are

safe to do θ (|p| − 2pF ) = 0 for the description of the low
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energy theory as long as |μ| does not get too close to m0.
On the other hand, when |μ| < m0 we will always have a
region in space where pF is small. However, this region is
localized near the DW where the adiabaticity is lost. This
means that within the adiabatic approximation we are safe to
do θ (|p| − 2pF ) = 0 for any value of μ except when |μ| ∼ m0,
in which case corrections proportional to θ (|p| − 2pF ) would
be needed.

Then, supposing |μ| is below or sufficiently above m0, we
can forget about the terms proportional to θ (|p| − 2pF ) and
do a derivative expansion to get

G1(p0 = 0) = θ (|μ| − |m|)

× e2

( |μ| − |m|
2πv2

− |p|2
12π |m| + O

( |p|4
|m|3

))
,

(C7)

G2(p0 = 0) = θ (|μ| − |m|)
(

e2|p|2
12π |m| + O

( |p|4
|m|3

))
. (C8)

These terms are finite in the limit p → 0.
At the same time, in the long wavelength limit we have

�00
matt,e = 0, �

ij
matt,e = G2(p = 0)δij ,

(C9)

�0i
matt,e = �i0

matt,e = G1(p = 0)
vpi

p0
.

Note that we maintain a linear dependence in pi as we impose
spatial homogeneity in the electric and magnetic fields. Now
we search for terms linear and quadratic in p0 in G1,2 which
are finite in the limit p → 0, so that we go up to second order
in a derivative expansion. With this procedure we get rid of
nonlocal terms (negative powers in p). From [75] we obtain,
in the low energy regime p2

0 � m2,

G1(p = 0) = θ (|μ| − |m|)

×
(

e2p2
0

12πv2|m| + O
(

p4
0

|m|3
)

+ n.l.t.

)
, (C10)

G2(p = 0) = −θ (|μ| − |m|)

×
(

e2p2
0

12πv2|m| + O
(

p4
0

|m|3
)

+ n.l.t.

)
, (C11)

where n.l.t. are nonlocal terms.
Adding the vacuum and matter contributions (in both static

and long wavelength limits) just obtained and neglecting the
nonlocal terms in Eqs. (C10) and (C11) we arrive at the
following expression for the even part of the polarization
function (in configuration space):

�00
e = −θ (|m| − |μ|) e2|∂|2

12π |m|

+ θ (|μ| − |m|)e
2(|μ| − |m|)

2πv2
, (C12)

�0i
e = �i0

e = θ (|m| − |μ|) e2∂0∂i

12πv|m| , (C13)

�ij
e = −θ (|m| − |μ|) e2∂2

12πv2|m|
(

δij + v2∂i∂j

∂2

)
. (C14)

Let us note that if we do p0 → 0 in the expressions for the
long wavelength limit, the polarization function obtained does
not coincide with the one we get if we do p → 0 in the
expressions for the static limit. This is due to the nonlocality of
the matter part. Withing our approximations, the commutator
of the limits p0 → 0 and p → 0 gives precisely the constant
term of G1(p0 = 0), which contributes to �00

e in the static
limit. This means that when adding the static plus the long
wavelength contributions, nonlocal terms which are constant
in the limit p0 → 0 and zero in the limit p → 0 are being
approximated by a constant term.

APPENDIX D: ACTION FOR THE IN-PLANE
MAGNETIZATION

To obtain the action for the in-plane magnetization we can
directly import results from Sec. II. The only place where a
bit of care is needed is in the computation of the action for the
chiral edge theory, as the sign of the chiral anomaly depends
on the sign of the mass. For clarity we will obtain the first order
and second order terms (in the magnetization) separately.

1. First order terms

From Eqs. (10), (12), (24), and (25) we obtain

�(1) =
∫

dt dx dy �xys · mxy, (D1)

where the spin density s is (restoring �)

s = ρ2
λ(x)

h

(
σμ

vF

± e

∂0 ± σvF ∂y

Ey

)
x̂

+ e

2hvF

(
σFλ(x)θ

(
�2

z tanh2(x/δ) − μ2
)

+ σ�z tanh(x/δ)

|μ| θ
(
μ2 − �2

z tanh2(x/δ)
))

E. (D2)

It is related to the electromagnetic current density as j =
±evF s × ẑ. To evaluate the nonequilibrium term, which is
nonlocal (the one with inverse derivatives), we will assume the
electromagnetic current to be time independent. We get [55]

± 1

∂0 ± σvF ∂y

Ey = − σ

vF

V (y), (D3)

with V (y) = −Eyy + const. We will further set the voltage to
zero at y = −L/2, where L is the length and y = ±L/2 are
the end points of the DW. We finally have

± 1

∂0 ± σvF ∂y

Ey = − σ

vF

�V (y), (D4)

where �V (y) = V (y) − V (−L/2) is the voltage between the
end point y = −L/2 and a given point y along the wall. The
nonequilibrium edge current density along the DW then reads

ja
ne = ±e2�V (y)

hvF

ρ2
λ(x)(1,σvF ). (D5)
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For more clarity let us take the spatial component and compute the average 〈jy
ne〉:

〈
jy
ne

〉 = 1

L

∫ L
2

− L
2

dy jy
ne = ±σ

e2

2h
|ρλ(x)|2�V, (D6)

where here �V = V (L/2) − V (−L/2) is the voltage between both end points of the DW. A similar current configuration has
been used recently in the literature [52,55].

Finally we can write the spin density as

s = σρ2
λ(x)

hvF

(μ − e�V (y))x̂ + e

2hvF

(
σFλ(x)θ

(
�2

z tanh2(x/δ) − μ2) + σ�z tanh(x/δ)

|μ| θ
(
μ2 − �2

z tanh2(x/δ)
))

E. (D7)

2. Second order terms

The quadratic terms in the magnetization can be obtained from Eqs. (12), (24), and (25). Expressions (24) (taken in the static
limit) and (25) give corrections to the exchange energy and the Berry phase term, respectively. Their contribution to the second
order terms of the effective action is

�
(2)
bulk = −d

∫
dt dx dy

{
Aeffθ

(
μ2−�2

z tanh2(x/δ)
)
((∂xmx)2 + (∂ymy)2) ∓ Meff

s

γ

(
σFλ(x1)θ

(
�2

z tanh2(x/δ) − μ2
)

+ σ�z tanh(x/δ)

|μ| θ
(
μ2 − �2

z tanh2(x/δ)
))

(my∂tmx − mx∂tmy)

}
, (D8)

with

Aeff = �2
xy

12π�zd
, Meff

s = �2
xyγ

2hdv2
F

. (D9)

The values of the effective exchange constant and saturation magnetization are Aeff ≈ 4.24 × 10−14 J/m and Meff
s ≈ 4.3 A/m,

which is much smaller than the values of the ferromagnet A and Ms , so that the contribution �
(2)
bulk can be neglected. Besides the

exchange energy and saturation magnetization renormalization, Eq. (24) gives also an extra dynamical contribution, but is second
order in time derivatives, and hence higher order in the derivative expansion than the CS contribution and can be neglected. There
would also be further nonlocal dynamical corrections at finite density, which are highly nontrivial to compute and which should
be again of no importance for the physics compared to the Berry phase term of the ferromagnet.

Regarding the second order contribution coming from the edge theory [Eq. (12)] we can write

�
(2)
anomaly = − �2

xy

2hvF

∫
dt dt ′dx dx ′dy dy ′ρ2

λ(x)ρ2
λ(x ′)mx(t,x,y)(−i∂t )G(t − t ′,y − y ′)mx(t ′,x ′,y ′),

(D10)

where we defined the Green function G as

G(t − t ′,y − y ′) =
∫

d2q

4π2

eiq0(t−t ′)eiqy (y−y ′)

q0 ∓ σvF qy

= i

2
sgn(t − t ′)δ(±σvF (t − t ′) + y − y ′).

(D11)

Doing the derivative of the Green function we get

�
(2)
anomaly = − �2

xy

2hvF

∫
dt dx dx ′dy ρ2

λ(x)ρ2
λ(x ′)

(
mx(t,x,y)mx(t,x ′,y)

+ 1

2

∫
dt ′dy ′mx(t,x,y)sgn(t − t ′)∂tδ(±σvF (t − t ′) + y − y ′)mx(t ′,x ′,y ′)

)
. (D12)

Taking into account that the magnetization does not depend on the y coordinate, the second term of the right-hand side of
Eq. (D12) can be simplified to

±σ
�2

xy

4hvF

∫
dt dx dx ′dy ρ2

λ(x)ρ2
λ(x ′)mx(t,x)(mx(t ∓ L/vF ,x ′) + mx(t ± L/vF ,x ′) − 2mx(t,x ′)), (D13)

where L is the DW length, and L/vF is the typical time that an electron takes to travel the whole length of the wall. Making use
of the translation operator we can write

mx(t ± L/vF ,x) = e
± L

vF
∂t mx(t,x)

(
1 ± L

vF

∂t + L2

2v2
F

∂2
t + O

(
L3

v3
F

∂3
t

))
mx(t,x), (D14)
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so that we have

± σ
�2

xy

4hvF

L2

v2
F

∫
dt dx dx ′dy |ρλ(x)|2|ρλ(x ′)|2 mx(t,x)∂2

t mx(t,x ′) + O
(

L3

v3
F

∂3
t

)
. (D15)

This is second and higher order in derivatives and so can be
neglected, and we finally get

�
(2)
anomaly = −dδ

2
Keff

⊥

∫
dt dx dx ′dy ρ2

λ(x)ρ2
λ(x ′)

×mx(t,x)mx(t,x ′), (D16)

where the effective hard axis anisotropy constant is

Keff
⊥ = �2

xy

dδ hvF

≈ 3.49 × 103 J/m3. (D17)

Assuming a ferromagnetic thin film with a weak in-plane
anisotropy, the whole contribution to the hard axis anisotropy
can be assumed to come from Keff

⊥ .

APPENDIX E: ACTION FOR THE OUT-OF-PLANE
MAGNETIZATION

Let us now compute the contributions linear and quadratic
in m̃z. We integrate out the fermions in Eq. (28) with magne-
tization given by Eq. (32), which includes fluctuations around
the equilibrium configuration [Eq. (31)]. We work in the adia-
batic approximation taking the mass m = ±σ�z tanh(x/δ) as
a constant and at the end restoring the x dependence. Picking
only the terms linear and quadratic in m̃z we have, in imaginary
time,

�z = − 1

2v2
F

∫
d3p d3q

(2π )6
((q0 − iμ)2 + E2(q))−1

× ((q0 + p0 − iμ)2 + E2(q + vF p))−1(A + B + C),

(E1)

where E(q) =
√

|q|2 + m2 and

A = −�2
zTr[(i( � �q + �p) − m)(i � �q − m)]m̃z(p)m̃z(−p), (E2)

B = i�zTr[(i( � �q + �p) − m) �a(p)(i � �q − m)]m̃z(−p), (E3)

C = i�zTr[(i( � �q + �p) − m)(i � �q − m) �a(−p)]m̃z(p). (E4)

We defined q̄μ = (q0 − iμ,q), pμ = (p0,vF p), and �s =
γ μsνδμν , since we are working in Euclidean space-time. It
can be seen that at μ = 0 the calculation gives no dynamical
terms first order in time derivatives, so in this limit dynamical
contributions can be neglected. At finite μ we will take the
static limit, assuming any dynamical contribution arising from
finite density effects can again be neglected compared to the
Berry phase term of the ferromagnet. Hence doing p0 = 0 and
performing the traces we get

A = �2
z

(
2q̄2

0 + 2|q|2 − 2m2 + q̄ipj δ
ij
)
m̃z(p)m̃z(−p), (E5)

B = 2�z(ε
0αβ q̄0pαaβ(p) + ε0αβ q̄αpβa0(p)

+ 2mq̄αaβ(p)δαβ + m p · a(p))m̃z(−p), (E6)

C = −2�z(ε
0αβ q̄0pαaβ(−p) + ε0αβ q̄αpβa0(−p)

− 2mq̄αaβ(−p)δαβ − m p · a(−p))m̃z(p). (E7)

The first term of B and C has the form of a DM interaction
mxy · p m̃z, while the second term would give a coupling to
the electric field.

We go up only to linear order in the external momentum, so
we expand the denominator of Eq. (E1) to first order in p and
pick only up to linear terms in the resulting expression. Then
performing the integrals in the internal momentum and using
dimensional regularization for the divergent integrals present
in the vacuum contribution we get (still in imaginary time)

�z = �z

16πvF

∫
d3p

(2π )3

m(μ2 − m2)

|μ|3
× θ (μ2 − m2) p · (a(p)m̃z(−p) + a(−p)m̃z(p))

+ �2
z

8πv2
F

∫
d3p

(2π )3

(
4|m|θ (m2 − μ2)

+
(

|m| + |μ| + 2m2

|μ|
)

θ (μ2 − m2)

)
m̃z(p)m̃z(−p).

(E8)

The first integral of Eq. (E8) above is antisymmetric in p and
vanishes up to a total derivative. The second one gives the final
nonzero result. We see that the terms mixing aμ with m̃z vanish,
which means that there is no coupling of the out-of-plane
magnetization with the electric field to this order and that
there is not effective DM interaction. The reason these terms
vanish resides in the following vanishing integral:∫ ∞

−∞

q0

2π
((q0 − iμ)2 + E2(q))−2(q0 − iμ) = 0. (E9)

Going back to real time and configuration space, and doing
the substitution m = ±σ�z tanh(x/δ), we get (restoring �)

�z = −dKeff

2

×
∫

dt dx dy

(
4| tanh(x/δ)|θ(

�2
z tanh2(x/δ) − μ2)

+
( |μ|

�z

+ | tanh(x/δ)| + 2�z tanh2(x/δ)

|μ|
)

× θ
(
μ2 − �2

z tanh2(x/δ)
))

m̃2
z, (E10)

which gives just a renormalization of the easy axis anisotropy
energy with

Keff = π�3
z

v2
F dh2

≈ 1.05 × 103 J/m3. (E11)

This is much smaller than the easy axis anisotropy constant of
the ferromagnet, so this term can be neglected.

085416-13



FERREIROS, BUIJNSTERS, AND KATSNELSON PHYSICAL REVIEW B 92, 085416 (2015)

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306,
666 (2004).

[2] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[3] M. I. Katsnelson, Graphene. Carbon in two dimensions (Cam-
bridge University Press, New York, 2012).

[4] L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803
(2007).

[5] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045
(2010).

[6] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
[7] S. S. P. Parkin, M. Hayashi, and L. Thomas, Science 320, 190

(2008).
[8] L. Thomas, R. Moriya, C. Rettner, and S. S. Parkin, Science

330, 1810 (2010).
[9] N. L. Schryer and L. R. Walker, J. Appl. Phys. 45, 5406 (1974).

[10] T. Ono, H. Miyajima, K. Shigeto, K. Mibu, N. Hosoito, and
T. Shinjo, Science 284, 468 (1999).

[11] D. Atkinson, D. A. Allwood, G. Xiong, M. D. Cooke, C. C.
Faulkner, and R. P. Cowburn, Nat. Mater. 2, 85 (2003).

[12] Y. Nakatani, N. Hayashi, T. Ono, and H. Miyajima, IEEE Trans.
Magn. 37, 2129 (2001).

[13] A. Thiaville, J. M. Garcı́a, and J. Miltat, J. Magn. Magn. Mater.
242-245, 1061 (2002).

[14] Y. Nakatani, A. Thiaville, and J. Miltat, Nat. Mater. 2, 521
(2003).

[15] G. S. D. Beach, C. Nistor, C. Knutson, M. Tsoi, and J. L. Erskine,
Nat. Mater. 4, 741 (2005).

[16] L. Berger, J. Appl. Phys. 55, 1954 (1984).
[17] P. P. Freitas and L. Berger, J. Appl. Phys. 57, 1266 (1985).
[18] C. Hung and L. Berger, J. Appl. Phys. 63, 4276 (1988).
[19] L. Gan, S. Chung, K. Aschenbach, M. Dreyer, and R. Gomez,

IEEE Trans. Magn. 36, 3047 (2000).
[20] H. Koo, C. Krafft, and R. D. Gomez, Appl. Phys. Lett. 81, 862

(2002).
[21] A. Yamaguchi, T. Ono, S. Nasu, K. Miyake, K. Mibu, and

T. Shinjo, Phys. Rev. Lett. 92, 077205 (2004).
[22] J. Grollier, P. Boulenc, V. Cros, A. Hamzić, A. Vaurès, A. Fert,
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