1,262 research outputs found

    An improved time of flight gamma-ray telescope to monitor diffuse gamma-ray in the energy range 5 MeV - 50 MeV

    Get PDF
    A time of flight measuring device is the basic triggering system of most of medium and high energy gamma-ray telescopes. A simple gamma-ray telescope has been built in order to check in flight conditions the functioning of an advanced time of flight system. The technical ratings of the system are described. This telescope has been flown twice with stratospheric balloons, its axis being oriented at various Zenital directions. Flight results are presented for diffuse gamma-rays, atmospheric secondaries, and various causes of noise in the 5 MeV-50 MeV energy range

    Reflectarray Antennas printed on convex surfaces

    Get PDF
    The characteristics of Reflectarray Antennas printed on convex curved surfaces are discussed in this paper. In particular, results will be presented on the radiation performances of Reflectarrays designed to fit cylinders with different radii of curvature, and with different types of radiating elements

    Dielectric, Switching and System Requirements under Out-of-Phase Conditions, during Synchronisation and under Comparable Stresses

    Get PDF
    Recent developments in electrical networks can increase the probability of out-of-phase switching and dielectric stresses being applied to open circuit-breakers, due to asynchronous systems at both sides. This report presents a systematic study of TRV-stresses associated with generator separation and system separation. TRV peak values are higher than required in the Standards, even for relatively small out-of-phase angles (75º to 90º), and the dielectric stresses are high with respect to the shortduration power frequency withstand voltages across a circuit-breaker open contacts, especially taking into consideration the external insulation under pollution and ageing processes. To the opinion of the authors, the Standards should be revised to give users clear and adequate guidance on the assessment and specification of TRV-values and dielectric withstand requirements under out-of-phase conditions

    Downregulation of 26S proteasome catalytic activity promotes epithelial-mesenchymal transition.

    Get PDF
    The epithelial-mesenchymal transition (EMT) endows carcinoma cells with phenotypic plasticity that can facilitate the formation of cancer stem cells (CSCs) and contribute to the metastatic cascade. While there is substantial support for the role of EMT in driving cancer cell dissemination, less is known about the intracellular molecular mechanisms that govern formation of CSCs via EMT. Here we show that β2 and β5 proteasome subunit activity is downregulated during EMT in immortalized human mammary epithelial cells. Moreover, selective proteasome inhibition enabled mammary epithelial cells to acquire certain morphologic and functional characteristics reminiscent of cancer stem cells, including CD44 expression, self-renewal, and tumor formation. Transcriptomic analyses suggested that proteasome-inhibited cells share gene expression signatures with cells that have undergone EMT, in part, through modulation of the TGF-β signaling pathway. These findings suggest that selective downregulation of proteasome activity in mammary epithelial cells can initiate the EMT program and acquisition of a cancer stem cell-like phenotype. As proteasome inhibitors become increasingly used in cancer treatment, our findings highlight a potential risk of these therapeutic strategies and suggest a possible mechanism by which carcinoma cells may escape from proteasome inhibitor-based therapy

    A cryogenic liquid-mirror telescope on the moon to study the early universe

    Full text link
    We have studied the feasibility and scientific potential of zenith observing liquid mirror telescopes having 20 to 100 m diameters located on the moon. They would carry out deep infrared surveys to study the distant universe and follow up discoveries made with the 6 m James Webb Space Telescope (JWST), with more detailed images and spectroscopic studies. They could detect objects 100 times fainter than JWST, observing the first, high-red shift stars in the early universe and their assembly into galaxies. We explored the scientific opportunities, key technologies and optimum location of such telescopes. We have demonstrated critical technologies. For example, the primary mirror would necessitate a high-reflectivity liquid that does not evaporate in the lunar vacuum and remains liquid at less than 100K: We have made a crucial demonstration by successfully coating an ionic liquid that has negligible vapor pressure. We also successfully experimented with a liquid mirror spinning on a superconducting bearing, as will be needed for the cryogenic, vacuum environment of the telescope. We have investigated issues related to lunar locations, concluding that locations within a few km of a pole are ideal for deep sky cover and long integration times. We have located ridges and crater rims within 0.5 degrees of the North Pole that are illuminated for at least some sun angles during lunar winter, providing power and temperature control. We also have identified potential problems, like lunar dust. Issues raised by our preliminary study demand additional in-depth analyses. These issues must be fully examined as part of a scientific debate we hope to start with the present article.Comment: 35 pages, 11 figures. To appear in Astrophysical Journal June 20 200

    Expansion tube capabilities for studying boost-glide re-entry conditions

    Get PDF
    The expansion tube is a unique hypersonic impulse facility capable of producing both high-enthalpy and high total pressure conditions simultaneously through the unsteady expansion of a non-stagnated test flow. When coupled with high-performance free-piston or detonation drivers, expansion tubes allow for the simulation of such conditions as scaled Earth re-entry, scaled entry into the atmospheres of other planets in the solar system, and high-speed flight through the Earth’s atmosphere. This paper focuses on the latter case and considers the capabilities of expansion tubes for re-creating the conditions experienced at various parts of the re-entry trajectory of a boost-glide vehicle. Boost-glide vehicles are a type of hypersonic vehicle which is generally boosted just outside the atmosphere by a rocket before ‘gliding’ down through the Earth’s atmosphere to a target, often re-entering at very high-speeds for atmospheric flight of up to Mach 22 (greater than 6 km/s). In a military sense, they are strategically important and are currently being developed by several nations around the world. The expansion tube’s unique ability to simulate high-enthalpy and high total pressure flight makes it particularly well suited to the study of these conditions. This paper will present expansion tube performance envelopes compared to planned boost-glide trajectories, as well as considering specific facility considerations required to generate these conditions

    Adaptive Sampling for Nonlinear Dimensionality Reduction Based on Manifold Learning

    Get PDF
    We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity Navier-Stokes flow solutions under smooth variations of the inflow conditions. The focus of the work at hand is the adaptive construction and refinement of the Isomap emulator: We exploit the non-Euclidean Isomap metric to detect and fill up gaps in the sampling in the embedding space. The performance of the proposed manifold filling method will be illustrated by numerical experiments, where we consider nonlinear parameter-dependent steady-state Navier-Stokes flows in the transonic regime

    Challenges in the harmonisation of global integrated assessment models: a comprehensive methodology to reduce model response heterogeneity

    Get PDF
    Harmonisation sets the ground to a solid inter-comparison of integrated assessment models. A clear and transparent harmonisation process promotes a consistent interpretation of the modelling outcomes divergences and, reducing the model variance, is instrumental to the use of integrated assessment models to support policy decision-making. Despite its crucial role for climate economic policies, the definition of a comprehensive harmonisation methodology for integrated assessment modelling remains an open challenge for the scientific community. This paper proposes a framework for a harmonisation methodology with the definition of indispensable steps and recommendations to overcome stumbling blocks in order to reduce the variance of the outcomes which depends on controllable modelling assumptions. The harmonisation approach of the PARIS REINFORCE project is presented here to layout such a framework. A decomposition analysis of the harmonisation process is shown through 6 integrated assessment models (GCAM, ICES-XPS, MUSE, E3ME, GEMINI-E3, and TIAM). Results prove the potentials of the proposed framework to reduce the model variance and present a powerful diagnostic tool to feedback on the quality of the harmonisation itself
    corecore