6 research outputs found

    The Decline in Vitamin Research Funding:A Missed Opportunity?

    Get PDF
    Background: The National Nutrition Research Roadmap has called for support of greater collaborative, interdisciplinary research for multiple areas of nutrition research. However, a substantial reduction in federal funding makes responding to these calls challenging. Objectives: The objectives of this study were to examine temporal trends in research funding and to discuss the potential consequences of these trends. Methods: We searched the NIH RePORTER database to identify NIH research grants and USASpending to identify National Science Foundation and USDA research grants awarded from 1992 to 2015. We focused on those that pertained to vitamin research. For the years 2000 to 2015, we examined funding trends for different vitamins, including vitamins A, B (one-carbon B-vitamins were considered separately from other B-vitamins), C, D, E, and K. Results: From 1992 to 2015, total federal research spending increased from similar to14to14 to 45 billion (2016 US dollars). Although vitamin research spending increased from similar to89to89 to 95 million, the proportion of grants awarded for vitamin research declined by more than two-thirds, from 0.65% in 1992 to 0.2% in 2015. Federal agencies awarded 6035 vitamin research grants over the time period, with vitamin A associated with the most research projects per year on average (n = 115) and vitamin K the fewest (n = 8). Vitamin D research projects were associated with the greatest average yearly project value ($34.8 million). Conclusions: Vitamin research has faced a disproportionate decline in research funding from 1992 to 2015. Insufficient federal research funding streams risk stalling progress in vitamin research and leaving important advancements unrealized

    A short-term intervention trial with selenate, selenium-enriched yeast and selenium-enriched milk: effects on oxidative defence regulation

    No full text
    Increased Se intakes have been associated with decreased risk of cancer and CVD. Several mechanisms have been proposed, including antioxidant effects through selenoproteins, induction of carcinogen metabolism and effects on the blood lipid profile. In a 4 x 1 week randomised, double-blind cross-over study, healthy young men supplemented their usual diet with selenate, Se-enriched yeast, Se-enriched milk or placebo (Se dose was 300 mu g/d for selenate and Se-enriched yeast, and about 480 mu g/d for Se-enriched milk) followed by 8-week washout periods. All Se sources increased serum Se levels after supplementation for 1 week. The effect of the organic forms did not differ significantly and both increased serum Se more than selenate. Conversely, thrombocyte glutathione peroxidase (GPX) was increased in the periods where subjects were supplemented with selenate but not in those where they were given Se-enriched yeast or Se-enriched milk. We found no effect on plasma lipid resistance to oxidation, total cholesterol, TAG, HDL- and LDL-cholesterol, GPX, glutathione reductase (GR) and glutathione S-transferase (GST) activities measured in erythrocytes, GPX and GR activities determined in plasma, or GR and GST activities in thrombocytes. Leucocyte expression of genes encoding selenoproteins (GPX1, TrR1 and SelP), and of electrophile response element-regulated genes (GCLC, Fra1 and NQO1) were likewise unaffected at all time points following intervention. We conclude that thrombocyte GPX is specifically increased by short-term selenate supplementation, but not by short-term supplementation with organic Se. Short-term Se supplementation does not seem to affect blood lipid markers or expression and activity of selected enzymes and a transcription factor involved in glutathione-mediated detoxification and antioxidation

    Monoclonal antibody-based time-resolved fluorescence immunoassays for Daidzein, Genistein, and Equol in blood and urine: Application to the Isoheart Intervention Study

    No full text
    Background: Time-resolved fluorescence immunoassays (TR-FIAs) for phytoestrogens in biological samples are an alternative to mass spectrometric methods. These immunoassays were used to test urine and plasma samples from individuals in a dietary intervention trial aimed at determining the efficacy of dietary isoflavones in reducing the risk of coronary heart disease in postmenopausal women. Methods: We established murine monoclonal TR-FIA methods for daidzein, genistein, and equol. These assays could be performed manually or adapted to an automated analyzer for high throughput and increased accuracy. Analysis of urine was conducted on nonextracted samples. Blood analysis was performed on nonextracted samples for daidzein, whereas genistein and equol required diethyl-ether extraction. Results: Comparison of monoclonal TR-FIA, commercial polyclonal antibody–based TR-FIA, and gas chromatography–mass spectrometry showed correlations (r, 0.911–0.994) across the concentration range observed in the Isoheart study (50 mg/day isoflavones). The concentrations of urinary daidzein and genistein observed during intervention demonstrated good compliance, and a corresponding increase in serum daidzein and genistein confirmed bioavailability of the isoflavone-rich foods; 33 of the 117 volunteers (28.2%) were classified as equol producers on the basis of their urinary equol concentration (>936 nmol/L), and significant differences in the numbers of equol producers were observed between Berlin and the 3 other European cohorts studied. Conclusions: The validated monoclonal TR-FIA methods are applicable for use in large-scale human phytoestrogen intervention studies and can be used to monitor compliance, demonstrate bioavailability, and assess equol producer status
    corecore