42 research outputs found

    A summary of water-quality and salt marsh monitoring, Humboldt Bay, California

    Get PDF
    This report summarizes data-collection activities associated with the U.S. Geological Survey Humboldt Bay Water-Quality and Salt Marsh Monitoring Project. This work was undertaken to gain a comprehensive understanding ofwater-quality conditions, salt marsh accretion processes, marsh-edge erosion, and soil-carbon storage in Humboldt Bay, California. Multiparameter sondes recorded water temperature, specific conductance, and turbidity at a 15-minute timestep at two U.S. Geological Survey water-quality stations: Mad River Slough near Arcata, California (U.S. Geological Survey station 405219124085601) and (2) Hookton Slough near Loleta, California (U.S. Geological Survey station 404038124131801). At each station, discrete water samples were collected to develop surrogate regression models that were used to compute a continuous time seriesof suspended-sediment concentration from continuously measured turbidity. Data loggers recorded water depth at a 6-minute timestep in the primary tidal channels (Mad River Slough and Hookton Slough) in two adjacent marshes (Mad River marsh and Hookton marsh). The marsh monitoring network included five study marshes. Three marshes (Mad River, Manila, and Jacoby) are in the northern embayment of Humboldt Bay and two marshes (White and Hookton) are in the southern embayment. Surface deposition and elevation change were measured using deep rod surface elevation tables and feldspar marker horizons. Sediment characteristics and soil-carbon storage were measured using a total of 10 shallow cores, distributed across 5 study marshes, collected using an Eijkelkamp peat sampler. Rates of marsh edge erosion (2010–19) were quantified in four marshes (Mad River, Manila, Jacoby, and White) by estimating changes in the areal extent of the vegetated marsh plain using repeat aerial imagery and light detection and ranging (LiDAR)-derived elevation data. During the monitoring period (2016–19), the mean suspended-sediment concentration computed for Hookton Slough (50±20 milligrams per liter [mg/L]) was higher than Mad River Slough (18±7 mg/L). Uncertainty in mean suspended-sediment concentration values is reported using a 90-percent confidence interval. Across the five study marshes, elevation change (+1.8±0.6 millimeters per year[mm/yr]) and surface deposition (+2.5±0.5 mm/yr) were lower than published values of local sea-level rise (4.9±0.8 mm/yr), and mean carbon density was 0.029±0.005 grams of carbon per cubic centimeter. From 2010 to 2019, marsh edge erosion and soil carbon loss were greatest in low-elevation marshes with the marsh edge characterized by a gentle transition from mudflat to vegetated marsh (herein, ramped edge morphology) and larger wind-wave exposure. Jacoby Creek marsh experienced the greatest edge erosion. In total, marsh edge erosion was responsible for 62.3 metric tons of estuarine soil carbon storage loss across four study marshes. Salt marshes are an important component of coastal carbon, which is frequently referred to as “blue carbon.” The monitoring data presented in this report provide fundamental information needed to manage blue carbon stocks, assess marsh vulnerability, inform sea-level rise adaptation planning, and build coastal resiliency to climate change

    Stress gradients structure spatial variability in coastal tidal marsh plant composition and diversity in a major Pacific coast estuary

    Get PDF
    Understanding the drivers of variability in plant diversity from local to landscape spatial scales is a challenge in ecological systems. Environmental gradients exist at several spatial scales and can be nested hierarchically, influencing patterns of plant diversity in complex ways. As plant community dynamics influence ecosystem function, understanding the drivers of plant community variability across space is paramount for predicting potential shifts in ecosystem function from global change. Determining the scales at which stress gradients influence vegetation composition is crucial to inform management and restoration of tidal marshes for specific functions. Here, we analyzed vegetation community composition in 51 tidal marshes from the San Francisco Bay Estuary, California, USA. We used model-based compositional analysis and rank abundance curves to quantify environmental (elevation/tidal frame position, distance to channel, and channel salinity) and species trait (species form, wetland indicator status, and native status) influences on plant community variability at the marsh site and estuary scales. While environmental impacts on plant diversity varied by species and their relationships to each other, overall impacts increased in strength from marsh to estuary scales. Relative species abundance was important in structuring these tidal marsh communities even with the limited species pools dominated by a few species. Rank abundance curves revealed different community structures by region with higher species evenness at plots higher in the tidal frame and adjacent to freshwater channels. By identifying interactions (species–species, species–environment, and environment–trait) at multiple scales (local, landscape), we begin to understand how variability measurements could be interpreted for conservation and land management decisions

    Lista de gêneros de Hymenoptera (Insecta) do Espírito Santo, Brasil

    Get PDF
    The first checklist of genera of Hymenoptera from Espírito Santo state, Brazil is presented. A total of 973 genera of Hymenoptera is listed, of which 555 (57%) are recorded for the first time from this state. Ichneumonoidea and Chalcidoidea are the two superfamilies with the most genera, 241 and 203 respectively. Braconidae, with 141 genera, are the richest family.The first checklist of genera of Hymenoptera from Espírito Santo state, Brazil is presented. A total of 973 genera of Hymenoptera is listed, of which 555 (57%) are recorded for the first time from this state. Ichneumonoidea and Chalcidoidea are the two superfamilies with the most genera, 241 and 203 respectively. Braconidae, with 141 genera, are the richest family.Fil: Azevedo, Celso O.. Universidade Federal do Espírito Santo; BrasilFil: Molin, Ana Dal. Texas A&M University; Estados UnidosFil: Penteado-Dias, Angelica. Universidade Federal do São Carlos; BrasilFil: Macedo, Antonio C. C.. Secretaria do Meio Ambiente do Estado de São Paulo; BrasilFil: Rodriguez-V, Beatriz. Universidad Nacional Autónoma de México; MéxicoFil: Dias, Bianca Z. K.. Universidade Federal do Espírito Santo; BrasilFil: Waichert, Cecilia. State University of Utah; Estados UnidosFil: Aquino, Daniel Alejandro. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smith, David. Smithsonian Institution; Estados UnidosFil: Shimbori, Eduardo M.. Universidade Federal do São Carlos; BrasilFil: Noll, Fernando B.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Gibson, Gary. Agriculture and Agri-Food Canada; CanadáFil: Onody, Helena. Universidade Federal do São Carlos; BrasilFil: Carpenter, James M.. American Museum of Natural History; Estados UnidosFil: Lattke, John. Universidad Nacional de Loja; EcuadorFil: Ramos, Kelli dos S.. Universidade de Sao Paulo; BrasilFil: Williams, Kevin. Florida State Collection of Arthropods; Estados UnidosFil: Masner, Lubomir. Agriculture and Agri-Food Canada; CanadáFil: Kimsey, Lynn. University of California; Estados UnidosFil: Tavares, Marcelo T.. Universidade Federal do Espírito Santo; BrasilFil: Olmi, Massimo. Università degli Studi della Tuscia; ItaliaFil: Buffington, Matthew L.. United States Department of Agriculture; Estados UnidosFil: Ohl, Michael. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Sharkey, Michael. University of Kentucky; Estados UnidosFil: Johnson, Norman F.. Ohio State University; Estados UnidosFil: Kawada, Ricardo. Universidade Federal do Espírito Santo; BrasilFil: Gonçalves, Rodrigo B.. Universidade Federal do Paraná; BrasilFil: Feitosa, Rodrigo. Universidade Federal do Paraná; BrasilFil: Heydon, Steven. University of California; Estados UnidosFil: Guerra, Tânia M.. Universidade Federal do Espírito Santo; BrasilFil: da Silva, Thiago S. R.. Universidade Federal do Espírito Santo; BrasilFil: Costa, Valmir. Instituto Biológico; Brasi

    Accuracy and precision of tidal wetland soil carbon mapping in the conterminous United States

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 8 (2018): 9478, doi:10.1038/s41598-018-26948-7.Tidal wetlands produce long-term soil organic carbon (C) stocks. Thus for carbon accounting purposes, we need accurate and precise information on the magnitude and spatial distribution of those stocks. We assembled and analyzed an unprecedented soil core dataset, and tested three strategies for mapping carbon stocks: applying the average value from the synthesis to mapped tidal wetlands, applying models fit using empirical data and applied using soil, vegetation and salinity maps, and relying on independently generated soil carbon maps. Soil carbon stocks were far lower on average and varied less spatially and with depth than stocks calculated from available soils maps. Further, variation in carbon density was not well-predicted based on climate, salinity, vegetation, or soil classes. Instead, the assembled dataset showed that carbon density across the conterminous united states (CONUS) was normally distributed, with a predictable range of observations. We identified the simplest strategy, applying mean carbon density (27.0 kg C m−3), as the best performing strategy, and conservatively estimated that the top meter of CONUS tidal wetland soil contains 0.72 petagrams C. This strategy could provide standardization in CONUS tidal carbon accounting until such a time as modeling and mapping advancements can quantitatively improve accuracy and precision.Synthesis efforts were funded by NASA Carbon Monitoring System (CMS; NNH14AY67I), USGS LandCarbon and the Smithsonian Institution. J.R.H. was additionally supported by the NSF-funded Coastal Carbon Research Coordination Network while completing this manuscript (DEB-1655622). J.M.S. coring efforts were funded by NSF (EAR-1204079). B.P.H. coring efforts were funded by Earth Observatory (Publication Number 197)

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe
    corecore