20 research outputs found

    Quantitative conditions of rectifiability for varifolds

    Get PDF
    46 pagesOur purpose is to state quantitative conditions ensuring the rectifiability of a dd--varifold VV obtained as the limit of a sequence of dd--varifolds (Vi)i(V_i)_i which need not to be rectifiable. More specifically, we introduce a sequence {Ei}i\left\lbrace \mathcal{E}_i \right\rbrace_i of functionals defined on dd--varifolds, such that if supiEi(Vi)<+\displaystyle \sup_i \mathcal{E}_i (V_i) < +\infty and ViV_i satisfies a uniform density estimate at some scale βi\beta_i, then V=limiViV = \lim_i V_i is dd--rectifiable. \noindent The main motivation of this work is to set up a theoretical framework where curves, surfaces, or even more general dd--rectifiable sets minimizing geometrical functionals (like the length for curves or the area for surfaces), can be approximated by ''discrete'' objects (volumetric approximations, pixelizations, point clouds etc.) minimizing some suitable ''discrete'' functionals

    Recovering measures from approximate values on balls

    Get PDF
    In a metric space (X,d)(X,d) we reconstruct an approximation of a Borel measure μ\mu starting from a premeasure qq defined on the collection of closed balls, and such that qq approximates the values of μ\mu on these balls. More precisely, under a geometric assumption on the distance ensuring a Besicovitch covering property, and provided that there exists a Borel measure on XX satisfying an asymptotic doubling-type condition, we show that a suitable packing construction produces a measure μ^q{\hat\mu}^{q} which is equivalent to μ\mu. Moreover we show the stability of this process with respect to the accuracy of the initial approximation. We also investigate the case of signed measures.Comment: 29 pages, 5 figure

    Quantitative conditions of rectifiability for varifolds

    Get PDF

    Approximation de surfaces par des varifolds discrets : représentation, courbure, rectifiabilité

    Get PDF
    The starting point of this work is the study of a volumetric surface discretization model naturally connected to the varifolds structure introduced in Chapter 2. The point is that not only the discretization we propose can be endowed with a structure of varifold but also a great part of objects used for surface representation and discretization (triangulation, cloud points, level sets etc.) so that we can use varifolds tools to study in some unified setting different ways of discretizing surfaces. An important point to overcome is that these structures are generally not rectifiable so that we address the following question: how to ensure that the limit of a sequence of such discrete surfaces is regular? More precisely, what conditions on a sequence of varifolds (not necessarily rectifiable nor with bounded variation) ensure that the limit varifold is rectifiable (Chapter 3) or has bounded first variation (Chapter 5)? We obtain quantitative conditions of rectifiability for variflods considering energies linked to Jones' beta numbers. We then address the question in terms of first variation (generalized curvature) of a limit varifold. We first try a packing measure construction of the first variation of a varifold V (Chapter 4), then we define a regularized form of the classical first variation, allowing us to exhibit an energetic condition ensuring that a limit of a sequence of varifolds has bounded first variation. We use this regularized form to build an approximate Willmore energy Gamma-converging in the class of varifolds to the Willmore energy. In Chapter 6, we test numerically a notion of approximate curvature derived from the regularized first variationLa motivation initiale de cette thèse est l'étude d'une discrétisation volumique de surface (Chapitre 2) naturellement liée à la structure de varifold. Le point clé est qu'il est possible de munir d'une structure de varifold la plupart des objets utilisés pour représenter ou discrétiser des surfaces c'est-à-dire aussi bien des objets tels que les sous variétés ou les ensembles rectifiables que des objets tels que des nuages de points ou encore la discrétisation volumique proposée, ce qui permet d'étudier dans un cadre unifié une surface et sa discrétisation. Une difficulté essentielle est que, généralement, ces structures discrètes ne sont pas rectifiables, ce qui soulève la question suivante : comment assurer qu'un varifold, obtenu comme limite de discrétisations volumiques, soit une surface, au moins en un sens faible ? De façon plus précise : quelles conditions sur une suite de varifolds quelconques assurent que le varifold limite est rectifiable (Chapitre 3) ou encore qu'il est à variation première bornée (Chapitre 5) ? On obtient des conditions quantitatives assurant la rectifiabilité grâce à des énergies liées aux nombres beta de Jones. On s'intéresse ensuite à la régularité du varifold limite en termes de courbure (variation première). On a essayé de contrôler la variation première en utilisant des techniques de construction de mesures de type packing (Chapitre 4), une forme régularisée de la variation première d'un varifold. Cette régularisation permet de définir des énergies de Willmore approchées qui Gamma convergent dans l'espace des varifolds vers l'énergie de Willmore ainsi qu'une approximation de la courbure qui est testée numériquement dans le Chapitre

    Semaine d'Etude Mathématiques et Entreprises 2 : Analyse multivariées pour la production d'aluminium

    Get PDF
    Ce rapport présente l'étude statistique, menée au cours de la deuxième Semaine d'Étude Maths-Entreprises, d'un problème industriel rencontré par Rio Tinto Alcan. Productrice d'aluminium par électrolyse, cette entreprise cherche à expliquer des fluctuations de procédé. À partir d'un ensemble de mesures sur les anodes et sur les cuves à électrolyse, nous proposons d'utiliser des méthodes d'analyse multivariée pour construire des modèles explicatifs. Le but étant de permettre aux usines d'éviter les périodes avec des fluctuations. Dans une première section, nous présentons le problème et ses enjeux. Nous détaillons dans les sections suivantes les différentes méthodes explorées et les résultats obtenus : l'analyse du coefficient de corré- lation en présence d'un déphasage et l'auto-corrélation, l'analyse en composantes principales, les arbres de décisions, le clustering et la régression linéaire. Des résultats complémentaires sont donnés en annexe

    Discrete varifolds and surface approximation : representation, curvature, rectifiability

    No full text
    La motivation initiale de cette thèse est l'étude d'une discrétisation volumique de surface (Chapitre 2) naturellement liée à la structure de varifold. Le point clé est qu'il est possible de munir d'une structure de varifold la plupart des objets utilisés pour représenter ou discrétiser des surfaces c'est-à-dire aussi bien des objets tels que les sous variétés ou les ensembles rectifiables que des objets tels que des nuages de points ou encore la discrétisation volumique proposée, ce qui permet d'étudier dans un cadre unifié une surface et sa discrétisation. Une difficulté essentielle est que, généralement, ces structures discrètes ne sont pas rectifiables, ce qui soulève la question suivante : comment assurer qu'un varifold, obtenu comme limite de discrétisations volumiques, soit une surface, au moins en un sens faible ? De façon plus précise : quelles conditions sur une suite de varifolds quelconques assurent que le varifold limite est rectifiable (Chapitre 3) ou encore qu'il est à variation première bornée (Chapitre 5) ? On obtient des conditions quantitatives assurant la rectifiabilité grâce à des énergies liées aux nombres beta de Jones. On s'intéresse ensuite à la régularité du varifold limite en termes de courbure (variation première). On a essayé de contrôler la variation première en utilisant des techniques de construction de mesures de type packing (Chapitre 4), une forme régularisée de la variation première d'un varifold. Cette régularisation permet de définir des énergies de Willmore approchées qui Gamma convergent dans l'espace des varifolds vers l'énergie de Willmore ainsi qu'une approximation de la courbure qui est testée numériquement dans le Chapitre 6The starting point of this work is the study of a volumetric surface discretization model naturally connected to the varifolds structure introduced in Chapter 2. The point is that not only the discretization we propose can be endowed with a structure of varifold but also a great part of objects used for surface representation and discretization (triangulation, cloud points, level sets etc.) so that we can use varifolds tools to study in some unified setting different ways of discretizing surfaces. An important point to overcome is that these structures are generally not rectifiable so that we address the following question: how to ensure that the limit of a sequence of such discrete surfaces is regular? More precisely, what conditions on a sequence of varifolds (not necessarily rectifiable nor with bounded variation) ensure that the limit varifold is rectifiable (Chapter 3) or has bounded first variation (Chapter 5)? We obtain quantitative conditions of rectifiability for variflods considering energies linked to Jones' beta numbers. We then address the question in terms of first variation (generalized curvature) of a limit varifold. We first try a packing measure construction of the first variation of a varifold V (Chapter 4), then we define a regularized form of the classical first variation, allowing us to exhibit an energetic condition ensuring that a limit of a sequence of varifolds has bounded first variation. We use this regularized form to build an approximate Willmore energy Gamma-converging in the class of varifolds to the Willmore energy. In Chapter 6, we test numerically a notion of approximate curvature derived from the regularized first variatio

    Flagfolds

    No full text
    By interpreting the product of the Principal Component Analysis, that is the covariance matrix, as a sequence of nested subspaces naturally coming with weights according to the level of approximation they provide, we are able to embed all dd--dimensional Grassmannians into a stratified space of covariance matrices. We observe that Grassmannians constitute the lowest dimensional skeleton of the stratification while it is possible to define a Riemaniann metric on the highest dimensional and dense stratum, such a metric being compatible with the global stratification. With such a Riemaniann metric at hand, it is possible to look for geodesics between two linear subspaces of different dimensions that do not go through higher dimensional linear subspaces as would euclidean geodesics. Building upon the proposed embedding of Grassmannians into the stratified space of covariance matrices, we generalize the concept of varifolds to what we call flagfolds in order to model multi-dimensional shapes

    Mean curvature motion of point cloud varifolds

    No full text
    This paper investigates a discretization scheme for mean curvature motion on point cloud varifolds with particular emphasis on singular evolutions. To define the varifold a local covariance analysis is applied to compute an approximate tangent plane for the points in the cloud. The core ingredient of the mean curvature motion model is the regularization of the first variation of the varifold via convolution with kernels with small stencil. Consistency with the evolution velocity for a smooth surface is proven provided that a sufficiently small stencil and a regular sampling are considered.  Furthermore, an implicit and a semi-implicit time discretization are derived. The implicit scheme comes with discrete barrier properties known for the smooth, continuous evolution, whereas the semi-implicit still ensures in all our numerical experiments very good approximation properties while being easy to implement. It is shown that the proposed method is robust with respect to noise and recovers the evolution of smooth curves as well as the formation of singularities such as triple points in 2D or minimal cones in 3D
    corecore