78 research outputs found

    INTERPOLASI SPASIAL REKONSTRUKSI PERUBAHAN PERMUKAAN TANAH MELALUI OTOMASI INVERSE DISTANCE WEIGHTING (IDW) UNTUK MEMANTAU KEMAJUAN PENAMBANGAN TERBUKA DI PT. AVOCET KABUPATEN BOLAANG MONGONDOW PROPINSI SULAWESI UTARA

    Get PDF
    Untuk memantau kemajuan suatu tambang terbuka dilakukan dengan cara menghitung volume tanah yang digali atau dipindahkan dari suatu lokasi tambang yang terukur. Perhitungan volume tanah dilakukan pada bidang permukaan kontinu dari susunan titik-titik lokasi yang teratur, yang berasal dari permukaan diskontinu dari sebaran data XYZ yang tidak teratur. Dapat dikatakan bahwa permukaan diskontinu tersebut tidak memiliki data Z. Tulisan ini mengemukakan penggunaan inverse distance weighting interpolator (IDW) untuk eksplorasi dan interpolasi nilai Z dan mengisi lubang titik lokasi secara keseluruhan, sehingga terbentuk suatu bidang kontinu. Ketika dua buah bidang kontinu yang mewakili permukaan tanah sebelum dan sesudah penggalian terbentuk, maka perhitungan volume tanah dapat dilakukan. Aplikasi komputer telah dibangun untuk keperluan pemantauan ini dan studi kasus telah dilakukan dilokasi PT AVOCET, Kabupaten Bolaang Mongondow, Propinsi Sulawesi Utara. Parameter IDW yang digunakan adalah : jarak antar titik grid = 2 – 5 m, pangkat = 2, parameter smoothing = 0 dan radius pencarian maksimum 200 m. Hasil proses aplikasi kemudian dibandingkan dengan hasil pengukuran lapangan, dan hasil yang didapat adalah penyimpangan baku terhitung 7,0 m3 dan dapat diterima baik oleh pemangku kepentingan sebagai bahan pemantauan dan pengawasan

    PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos

    Get PDF
    Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis elegans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanisms by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL-1/CHK-1 dependent checkpoint in P1, but how the remaining time difference is controlled is not known. Here, we establish that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by A-P polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1, but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, our findings support a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1-dependent preferential retardation in P1 and PLK-1-dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early developmen

    Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner

    Get PDF
    Neural stem and progenitor cells undergo an important transition from proliferation to differentiation in the G1 phase of the cell cycle. The mechanisms coordinating this transition are incompletely understood. Cyclin D proteins promote proliferation in G1 and typically are down-regulated before differentiation. Here we show that motoneuron progenitors in the embryonic spinal cord persistently express Cyclin D1 during the initial phase of differentiation, while down-regulating Cyclin D2. Loss-of-function and gain-offunction experiments indicate that Cyclin D1 (but not D2) promotes neurogenesis in vivo, a role that can be dissociated from its cell cycle function. Moreover, reexpression of Cyclin D1 can restore neurogenic capacity to D2-expressing glial-restricted progenitors. The neurogenic function of Cyclin D1 appears to be mediated, directly or indirectly, by Hes6, a proneurogenic basic helic-loop-helix transcription factor. These data identify a cell cycle-independent function for Cyclin D1 in promoting neuronal differentiation, along with a potential genetic pathway through which this function is exerted

    CENP-A and topoisomerase-II antagonistically affect chromosome length

    Get PDF
    The size of mitotic chromosomes is coordinated with cell size in a manner dependent on nuclear trafficking. In this study, we conducted an RNA interference screen of the Caenorhabditis elegans nucleome in a strain carrying an exceptionally long chromosome and identified the centromere-specific histone H3 variant CENP-A and the DNA decatenizing enzyme topoisomerase-II (topo-II) as candidate modulators of chromosome size. In the holocentric organism C. elegans , CENP-A is positioned periodically along the entire length of chromosomes, and in mitosis, these genomic regions come together linearly to form the base of kinetochores. We show that CENP-A protein levels decreased through development coinciding with chromosome-size scaling. Partial loss of CENP-A protein resulted in shorter mitotic chromosomes, consistent with a role in setting chromosome length. Conversely, topo-II levels were unchanged through early development, and partial topo-II depletion led to longer chromosomes. Topo-II localized to the perimeter of mitotic chromosomes, excluded from the centromere regions, and depletion of topo-II did not change CENP-A levels. We propose that self-assembly of centromeric chromatin into an extended linear array promotes elongation of the chromosome, whereas topo-II promotes chromosome-length shortening

    A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes

    Get PDF
    To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci

    The role of PLK-1 in asynchronous cell division of two-cell stage "C. elegans" embryos

    No full text
    Summary Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis a/egans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanism by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL1/CHK-1 dependent checkpoint in P1 but how the remaining time difference is controlled was not known at the onset of my work. The principal line of work in this thesis established that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by anterior-posterior (A-P) polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1 but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, these findings favor a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1 dependent preferential retardation in P1 and PLK-1 dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development. Besides analyzing PLK-1 asymmetry and its role in differential timing of two-cells stage embryos, we also characterized t2190, a mutant that exhibits reduced differential timing between AB and P1. We found this mutant to be a new allele of par-1. Additionally, we analyzed the role of NMY-2 in regulating the asynchrony of two-cell stage embryos, which may be uncoupled from its role in A-P polarity establishment and carried out a preliminary analysis of the mechanism underlying CDC-25 asymmetry between AB and P,. Overall, our works bring new insights into the mechanism controlling cell cycle progression in early C. elegans embryos. As most of the players important in C. elegans are conserved in other organisms, analogous mechanisms may be utilized in polarized cells of other species. Résumé Au cours du développement, les processus de division cellulaire sont régulés dans l'espace et le temps afin d'aboutir à la formation d'un organisme fonctionnel. Chez les Métazoaires, l'un des mécanismes de contrôle s'effectue au niveau de la durée du cycle cellulaire, celle-ci étant specifiée selon la lignée cellulaire. L'embryon du nématode Caenorhabditis elegans apparaît comme un excellent modèle d'étude de la régulation temporelle du cycle cellulaire. En effet, suite à la première division du zygote, l'embryon est alors composé de deux cellules de taille et d'identité différentes, appelées blastomères AB et P1. Ces deux cellules vont ensuite se diviser de manière asynchrone, le grand blastomère antérieur AB se divisant plus rapidement que le petit blastomère postérieur P1. Cette asynchronie de division est sous le contrôle des protéines PAR qui sont impliquées dans l'établissement de l'axe antéro-postérieur de l'embryon. A ce jour, les mécanismes moléculaires gouvernant ce processus d'asynchronie ne sont que partiellement compris. Des études menées précédemment ont établit que le retard de division observé dans le petit blastomère postérieur P1 était dû, en partie, à l'activation préférentielle dans cette cellule de ATL-1/CHK-1, protéines contrôlant la réponse à des erreurs dans le processus de réplication de l'ADN. L'analyse des autres mécanismes responsables de la différence temporelle d'entrée en mitose des deux cellules a été entreprise au cours de cette thèse. Nous avons considéré la possibilité que l'asynchronie de division était du à l'entrée préférentielle en mitose du grand blastomère AB. Nous avons établi que la protéine kinase PLK-1 (polo-like kinase 1), impliquée dans la régulation positive de la mitose, était distribuée de manière asymétrique dans l'embryon deux cellules. PLK-1 est en effet enrichi dans le blastomère AB. Cette localisation asymétrique de PLK-1 est sous le contrôle des protéines PAR et semble établie via une rétention de PLK-1 dans la cellule AB. Par ailleurs, nous avons démontré que l'inactivation partielle de plk-7 par interférence à ARN (RNAi) conduit à un délai de l'entrée en mitose de la cellule P1 spécifiquement, indépendamment des protéines régulatrices ATL-1/CHK-1. En conclusion, nous proposons un modèle de régulation temporelle de l'entrée en mitose dans l'embryon deux cellules de C. elegans basé sur deux mécanismes complémentaires. Le premier implique l'activation préférentielle des protéines ATL-1/CHK-1, et conduit à un retard d'entrée en mitose spécifiquement dans la cellule P1. Le second est basé sur la localisation asymétrique de la protéine kinase PLK-1 dans la cellule AB et induit une entrée précoce en mitose de cette cellule. Par ailleurs, nous avons étudié un mutant appelé t2190 qui réduit la différence temporelle d'entrée en mitose entre les cellules AB et P1. Nous avons démontré que ce mutant correspondait à un nouvel allèle du Bene par-1. De plus, nous avons analysé le rôle de NMY-2, une protéine myosine qui agit comme moteur moléculaire sur les filaments d'active; dans la régulation de l'asynchronie de division des blastomères AB et P1, indépendamment de sa fonction dans l'établissement de l'axe antéro-postérieur. Par ailleurs, nous avons commencé l'étude du mécanisme moléculaire régulant la localisation asymétrique entre les cellules AB et P1 de la protéine phosphatase CDC25, qui est également un important régulateur de l'entrée en mitose. En conclusion, ce travail de thèse a permis une meilleure compréhension des mécanismes gouvernant la progression du cycle cellulaire dans l'embryon précoce de C. elegans. Etant donné que la plupart des protéines impliquées dans ces processus sont conservées chez d'autres organismes multicellulaires, il apparaît probable que les mécanismes moléculaires révélés dans cette étude soit aussi utilisés chez ceux-ci

    Coupling the cell cycle to development

    No full text
    The core machinery that drives the eukaryotic cell cycle has been thoroughly investigated over the course of the past three decades. It is only more recently, however, that light has been shed on the mechanisms by which elements of this core machinery are modulated to alter cell cycle progression during development. It has also become increasingly clear that, conversely, core cell cycle regulators can play a crucial role in developmental processes. Here, focusing on findings from Drosophila melanogaster and Caenorhabditis elegans, we review the importance of modulating the cell cycle during development and discuss how core cell cycle regulators participate in determining cell fate

    Molecular cloning and heterologous expression of human interferon alpha2b gene

    No full text
    10.3844/ajbbsp.2013.423.429American Journal of Biochemistry and Biotechnology94423-42
    corecore