21 research outputs found

    Towards Electron Energy Loss Compton Spectra Free From Dynamical Diffraction Artifacts

    Get PDF
    The Compton signal in electron energy loss spectroscopy (EELS) is used to determine the projected electron momentum density of states for the solid. A frequent limitation however is the strong dynamical scattering of the incident electron beam within a crystalline specimen, i.e. Bragg diffracted beams can be additional sources of Compton scattering that distort the measured profile from its true shape. The Compton profile is simulated via a multislice method that models dynamical scattering both before and after the Compton energy loss event. Simulations indicate the importance of both the specimen illumination condition and EELS detection geometry. Based on this, a strategy to minimize diffraction artifacts is proposed and verified experimentally. Furthermore, an inversion algorithm to extract the projected momentum density of states from a Compton measurement performed under strong diffraction conditions is demonstrated. The findings enable a new route to more accurate electron Compton data from crystalline specimens

    Angular dependence of fast-electron scattering from materials

    Get PDF
    Angular resolved scanning transmission electron microscopy is an important tool for investigating the properties of materials. However, several recent studies have observed appreciable discrepancies in the angular scattering distribution between experiment and theory. In this paper we discuss a general approach to low-loss inelastic scattering which, when incorporated in the simulations, resolves this problem and also closely reproduces experimental data taken over an extended angular range. We also explore the role of ionic bonding, temperature factors, amorphous layers on the surfaces of the specimen, and static displacements of atoms on the angular scattering distribution. The incorporation of low-loss inelastic scattering in simulations will improve the quantitative usefulness of techniques such as low-angle annular dark-field imaging and position-averaged convergent beam electron diffraction, especially for thicker specimens

    Inelastic Scattering in Electron Backscatter Diffraction and Electron Channeling Contrast Imaging

    Get PDF
    Electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) are used to extract crystallographic information from bulk samples, such as their crystal structure and orientation as well as the presence of any dislocation and grain boundary defects. These techniques rely on the backscattered electron signal, which has a large distribution in electron energy. Here, the influence of plasmon excitations on EBSD patterns and ECCI dislocation images is uncovered by multislice simulations including inelastic scattering. It is shown that the Kikuchi band contrast in an EBSD pattern for silicon is maximum at small energy loss (i.e., few plasmon scattering events following backscattering), consistent with previous energy-filtered EBSD measurements. On the other hand, plasmon excitation has very little effect on the ECCI image of a dislocation. These results are explained by examining the role of the characteristic plasmon scattering angle on the intrinsic contrast mechanisms in EBSD and ECCI

    Microscopic Analysis of Interdiffusion and Void Formation in CdTe(1–x)Sex and CdTe Layers

    Get PDF
    The use of CdSe layers has recently emerged as a route to improving CdTe photovoltaics through the formation of a CdTe(1–x)Sex (CST) phase. However, the extent of the Se diffusion and the influence it has on the CdTe grain structure has not been widely investigated. In this study, we used transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD) to investigate the impact of growing CdTe layers on three different window layer structures CdS, CdSe, and CdS/CdSe. We demonstrate that extensive intermixing occurs between CdS, CdSe, and CdTe layers resulting in large voids forming at the front interface, which will degrade device performance. The use of CdS/CdSe bilayer structures leads to the formation of a parasitic CdS(1–x)Sex phase. Following removal of CdS from the cell structure, effective CdTe and CdSe intermixing was achieved. However, the use of sputtered CdSe had limited success in producing Se grading in CST

    Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells

    Get PDF
    CdTe thin-film solar cells have complex microstructures, such as grain boundaries within the absorber layer, as well as CdS window, and Au back contact interfaces, where the local structure and chemistry undergo significant changes. The optical properties at these nano-scale defects are unknown, but their accurate measurement is required in order to identify potential losses in device efficiency. Here monochromated electron energy loss spectroscopy (EELS) in an aberration corrected scanning transmission electron microscope (STEM) is used to measure the complex dielectric function for the CdTe1-xSx inter-diffusion layer at the CdS-CdTe interface, high angle CdTe grain boundaries and Au-CdTe interface. CdTe1-xSx is shown to have a lower absorption coefficient than CdTe, but its refractive index is more closely matched to CdS. Grain boundaries have a negligible effect on the light absorption profile within CdTe, despite significant changes in the local structure and chemistry (i.e. Te-depletion) at the grain boundary. Delocalisation in inelastic scattering is the dominant systematic error in the above measurements. Finally a light backscattering mechanism via surface plasmon polaritons at the Au-CdTe interface is uncovered, which could potentially increase the photocurrent extracted from incident light at energies just above the CdTe band gap
    corecore