37 research outputs found

    Ten years of external quality assessment (EQA) of Neisseria gonorrhoeae antimicrobial susceptibility testing in Europe elucidate high reliability of data

    Get PDF
    BACKGROUND: Confidence in any diagnostic and antimicrobial susceptibility testing data is provided by appropriate and regular quality assurance (QA) procedures. In Europe, the European Gonococcal Antimicrobial Susceptibility Programme (Euro-GASP) has been monitoring the antimicrobial susceptibility in Neisseria gonorrhoeae since 2004. Euro-GASP includes an external quality assessment (EQA) scheme as an essential component for a quality-assured laboratory-based surveillance programme. Participation in the EQA scheme enables any problems with the performed antimicrobial susceptibility testing to be identified and addressed, feeds into the curricula of laboratory training organised by the Euro-GASP network, and assesses the capacity of individual laboratories to detect emerging new, rare and increasing antimicrobial resistance phenotypes. Participant performance in the Euro-GASP EQA scheme over a 10 year period (2007 to 2016, no EQA in 2013) was evaluated. METHODS: Antimicrobial susceptibility category and MIC results from the first 5 years (2007-2011) of the Euro-GASP EQA were compared with the latter 5 years (2012-2016). These time periods were selected to assess the impact of the 2012 European Union case definitions for the reporting of antimicrobial susceptibility. RESULTS: Antimicrobial susceptibility category agreement in each year was ≥91%. Discrepancies in susceptibility categories were generally because the MICs for EQA panel isolates were on or very close to the susceptibility or resistance breakpoints. A high proportion of isolates tested over the 10 years were within one (≥90%) or two (≥97%) MIC log2 dilutions of the modal MIC, respectively. The most common method used was Etest on GC agar base. There was a shift to using breakpoints published by the European Committee on Antimicrobial Susceptibility Testing (EUCAST) in the latter 5 years, however overall impact on the validity of results was limited, as the percentage categorical agreement and MIC concordance changed very little between the two five-year periods. CONCLUSIONS: The high level of comparability of results in this EQA scheme indicates that high quality data are produced by the Euro-GASP participants and gives confidence in susceptibility and resistance data generated by laboratories performing decentralised testing.The study was funded by the European Centre for Disease Prevention and Control (Framework Contract No. ECDC/2013/015). The funding body contributed to the design of the study, the interpretation of the data and to the writing of the manuscript.S

    Protein kinase A-mediated CREB phosphorylation is an oxidant-induced survival pathway in alveolar type II cells

    Get PDF
    Oxidant stress plays a role in the pathogenesis of pulmonary diseases, including fibrotic lung disease and cancer. We previously found that hydrogen peroxide (H2O2) initiates an increase in Ca2+/cAMP-response element binding protein (CREB) phosphorylation in C10 alveolar type II cells that requires activation of extracellular regulated kinases 1/2 (ERK1/2). Here, we investigated the role of crosstalk between protein kinase A (PKA) and epidermal growth factor receptor (EGFR) in oxidant-induced signaling to ERK1/2 and CREB in C10 cells. Application of H2O2 increased nuclear accumulation of PKA, and inhibition of PKA with H89 reduced oxidant-mediated phosphorylation of both CREB and ERK1/2. Single cell measurements of cAMP and redox status, using a FRET-based biosensor and a redox-sensitive GFP, respectively, indicated that H2O2 increases production of cAMP that correlates with redox state. Inhibition of EGFR activity decreased both H2O2-induced CREB phosphorylation and translocation of PKA to the nucleus, suggesting that crosstalk between PKA and EGFR underlies the oxidant-induced CREB response. Furthermore, knockdown of CREB expression using siRNA led to a decrease in bcl-2 and an increase in oxidant-induced apoptosis. Together these data reveal a novel role for crosstalk between PKA, ERK1/2 and CREB that mediates cell survival during oxidant stress

    Significant increase in azithromycin “resistance” and susceptibility to ceftriaxone and cefixime in Neisseria gonorrhoeae isolates in 26 European countries, 2019

    Get PDF
    Euro-GASP network: Claudia Eder, Sonja Pleininger, Steliana Huhlescu, Irith de Baetselier, Blaženka Hunjak, Tatjana Nemeth Blažić, Panagiota Maikanti-Charalampous, Despo Pieridou, Hana Zákoucká, Helena Žemličková, Steen Hoffmann, Susan Cowan, Rita Peetso, Jelena Viktorova, Ndeindo Ndeikoundam, Beatrice Bercot, Anu Patari Sampo, Vesa Kirjavainen, Susanne Buder, Klaus Jansen, Vivi Miriagou, Eszter Balla, Mária Dudás, Guðrún Sigmundsdóttir, Lena Ros Asmundsdottir, Sinead Saab, Brendan Crowley, Anna Carannante, Paola Stefanelli, Gatis Pakarna, Violeta Mavcutko, Robert Cassar, Christopher Barbara, Francesca Vella, Alje Van Dam, Ineke Linde, Dominique Caugant, Hilde Kløvstad, Beata Mlynarczyk-Bonikowska, Maria-José Borrego, Peter Pavlik, Irena Klavs, Tanja Kustec, Julio Vazquez, Asuncion Diaz, Raquel Abad Torreblanca, Inga Velicko, Magnus Unemo, Helen Fifer, Kate TempletonBackground: The European Gonococcal Antimicrobial Surveillance Programme (Euro-GASP) performs annual sentinel surveillance of Neisseria gonorrhoeae susceptibility to therapeutically relevant antimicrobials across the European Union/European Economic Area (EU/EEA). We present the Euro-GASP results from 2019 (26 countries), linked to patient epidemiological data, and compared with data from previous years. Methods: Agar dilution and minimum inhibitory concentration (MIC) gradient strip methodologies were used to determine the antimicrobial susceptibility (using EUCAST clinical breakpoints, where available) of 3239 N. gonorrhoeae isolates from 26 countries across the EU/EEA. Significance of differences compared with Euro-GASP results in previous years was analysed using Z-test and the Pearson's χ2 test was used to assess significance of odds ratios for associations between patient epidemiological data and antimicrobial resistance. Results: European N. gonorrhoeae isolates collected between 2016 and 2019 displayed shifting MIC distributions for; ceftriaxone, with highly susceptible isolates increasing over time and occasional resistant isolates each year; cefixime, with highly-susceptible isolates becoming increasingly common; azithromycin, with a shift away from lower MICs towards higher MICs above the EUCAST epidemiological cut-off (ECOFF); and ciprofloxacin which is displaying a similar shift in MICs as observed for azithromycin. In 2019, two isolates displayed ceftriaxone resistance, but both isolates had MICs below the azithromycin ECOFF. Cefixime resistance (0.8%) was associated with patient sex, with resistance higher in females compared with male heterosexuals and men-who-have-sex-with-men (MSM). The number of countries reporting isolates with azithromycin MICs above the ECOFF increased from 76.9% (20/26) in 2016 to 92.3% (24/26) in 2019. Isolates with azithromycin MICs above the ECOFF (9.0%) were associated with pharyngeal infection sites. Following multivariable analysis, ciprofloxacin resistance remained associated with isolates from MSM and heterosexual males compared with females, the absence of a concurrent chlamydial infection, pharyngeal infection sites and patients ≥ 25 years of age. Conclusions: Resistance to ceftriaxone and cefixime remained uncommon in EU/EEA countries in 2019 with a significant decrease in cefixime resistance observed between 2016 and 2019. The significant increase in azithromycin "resistance" (azithromycin MICs above the ECOFF) threatens the effectiveness of the dual therapy (ceftriaxone + azithromycin), i.e., for ceftriaxone-resistant cases, currently recommended in many countries internationally and requires close monitoring.The study was funded by the European Centre for Disease Prevention and Control (Framework Contract No. ECDC/2017/004).info:eu-repo/semantics/publishedVersio

    Europe-wide expansion and eradication of multidrug-resistant Neisseria gonorrhoeae lineages: a genomic surveillance study

    Get PDF
    Centre for Genomic Pathogen Surveillance and the Euro-GASP study group: Sonja Pleininger, Alexander Indra, Irith De Baetselier, Wim Vanden Berghe, Blaženka Hunjak, Tatjana Nemeth Blažić, Panayiota Maikanti-Charalambous, Despo Pieridou, Hana Zákoucká, Helena Žemličková, Steen Hoffmann, Susan Cowan, Lasse Jessen Schwartz, Rita Peetso, Jevgenia Epstein, Jelena Viktorova, Ndeindo Ndeikoundam, Beatrice Bercot, Cécile Bébéar, Florence Lot, Susanne Buder, Klaus Jansen, Vivi Miriagou, Georgios Rigakos, Vasilios Raftopoulos, Eszter Balla, Mária Dudás, Lena Rós Ásmundsdóttir, Guðrún Sigmundsdóttir, Guðrún Svanborg Hauksdóttir, Thorolfur Gudnason, Aoife Colgan, Brendan Crowley, Sinéad Saab, Paola Stefanelli, Anna Carannante, Patrizia Parodi, Gatis Pakarna, Raina Nikiforova, Antra Bormane, Elina Dimina, Monique Perrin, Tamir Abdelrahman, Joël Mossong, Jean-Claude Schmit, Friedrich Mühlschlegel, Christopher Barbara, Francesca Mifsud, Alje Van Dam, Birgit Van Benthem, Maartje Visser, Ineke Linde, Hilde Kløvstad, Dominique Caugant, Beata Młynarczyk-Bonikowska, Jacinta Azevedo, Maria-José Borrego, Marina Lurdes Ramos Nascimento, Peter Pavlik, Irena Klavs, Andreja Murnik, Samo Jeverica, Tanja Kustec, Julio Vázquez Moreno, Asuncion Diaz, Raquel Abad, Inga Velicko, Magnus Unemo, Helen Fifer, Jill Shepherd, Lynsey PattersonBackground: Genomic surveillance using quality-assured whole-genome sequencing (WGS) together with epidemiological and antimicrobial resistance (AMR) data is essential to characterise the circulating Neisseria gonorrhoeae lineages and their association to patient groups (defined by demographic and epidemiological factors). In 2013, the European gonococcal population was characterised genomically for the first time. We describe the European gonococcal population in 2018 and identify emerging or vanishing lineages associated with AMR and epidemiological characteristics of patients, to elucidate recent changes in AMR and gonorrhoea epidemiology in Europe. Methods: We did WGS on 2375 gonococcal isolates from 2018 (mainly Sept 1-Nov 30) in 26 EU and EEA countries. Molecular typing and AMR determinants were extracted from quality-checked genomic data. Association analyses identified links between genomic lineages, AMR, and epidemiological data. Findings: Azithromycin-resistant N gonorrhoeae (8·0% [191/2375] in 2018) is rising in Europe due to the introduction or emergence and subsequent expansion of a novel N gonorrhoeae multi-antigen sequence typing (NG-MAST) genogroup, G12302 (132 [5·6%] of 2375; N gonorrhoeae sequence typing for antimicrobial resistance [NG-STAR] clonal complex [CC]168/63), carrying a mosaic mtrR promoter and mtrD sequence and found in 24 countries in 2018. CC63 was associated with pharyngeal infections in men who have sex with men. Susceptibility to ceftriaxone and cefixime is increasing, as the resistance-associated lineage, NG-MAST G1407 (51 [2·1%] of 2375), is progressively vanishing since 2009-10. Interpretation: Enhanced gonococcal AMR surveillance is imperative worldwide. WGS, linked to epidemiological and AMR data, is essential to elucidate the dynamics in gonorrhoea epidemiology and gonococcal populations as well as to predict AMR. When feasible, WGS should supplement the national and international AMR surveillance programmes to elucidate AMR changes over time. In the EU and EEA, increasing low-level azithromycin resistance could threaten the recommended ceftriaxone-azithromycin dual therapy, and an evidence-based clinical azithromycin resistance breakpoint is needed. Nevertheless, increasing ceftriaxone susceptibility, declining cefixime resistance, and absence of known resistance mutations for new treatments (zoliflodacin, gepotidacin) are promising.This study was supported by the European Centre for Disease Prevention and Control, the Centre for Genomic Pathogen Surveillance, the Li Ka Shing Foundation (Big Data Institute, University of Oxford), the Wellcome Genome Campus, the Foundation for Medical Research at Örebro University Hospital, and grants from Wellcome (098051 and 099202). LSB was funded by Conselleria de Sanitat Universal i Salut Pública, Generalitat Valenciana (Plan GenT CDEI-06/20-B), Valencia, Spain, and Ministry of Science, Innovation and Universities (PID2020–120113RA-I00), Spain, at the time of analysing and writing this manuscript.info:eu-repo/semantics/publishedVersio

    Systemic versus localized coagulation activation contributing to organ failure in critically ill patients

    Get PDF
    In the pathogenesis of sepsis, inflammation and coagulation play a pivotal role. Increasing evidence points to an extensive cross-talk between these two systems, whereby inflammation not only leads to activation of coagulation but coagulation also considerably affects inflammatory activity. The intricate relationship between inflammation and coagulation may not only be relevant for vascular atherothrombotic disease in general but has in certain clinical settings considerable consequences, for example in the pathogenesis of microvascular failure and subsequent multiple organ failure, as a result of severe infection and the associated systemic inflammatory response. Molecular pathways that contribute to inflammation-induced activation of coagulation have been precisely identified. Pro-inflammatory cytokines and other mediators are capable of activating the coagulation system and downregulating important physiological anticoagulant pathways. Activation of the coagulation system and ensuing thrombin generation is dependent on an interleukin-6-induced expression of tissue factor on activated mononuclear cells and endothelial cells and is insufficiently counteracted by physiological anticoagulant mechanisms and endogenous fibrinolysis. Interestingly, apart from the overall systemic responses, a differential local response in various vascular beds related to specific organs may occur

    A Protein Kinase Cδ-Dependent Protein Kinase D Pathway Modulates ERK1/2 and JNK1/2 Phosphorylation and Bim-Associated Apoptosis by Asbestos

    No full text
    Inhalation of asbestos and oxidant-generating pollutants causes injury and compensatory proliferation of lung epithelium, but the signaling mechanisms that lead to these responses are unclear. We hypothesized that a protein kinase (PK)Cδ-dependent PKD pathway was able to regulate downstream mitogen-activated protein kinases, affecting pro- and anti-apoptotic responses to asbestos. Elevated levels of phosphorylated PKD (p-PKD) were observed in distal bronchiolar epithelial cells of mice inhaling asbestos. In contrast, PKCδ−/− mice showed significantly lower levels of p-PKD in lung homogenates and in situ after asbestos inhalation. In a murine lung epithelial cell line, asbestos caused significant increases in the phosphorylation of PKCδ-dependent PKD, ERK1/2, and JNK1/2/c-Jun that occurred with decreases in the BH3-only pro-apoptotic protein, Bim. Silencing of PKCδ, PKD, and use of small molecule inhibitors linked the ERK1/2 pathway to the prevention of Bim-associated apoptosis as well as the JNK1/2/c-Jun pathway to the induction of apoptosis. Our studies are the first to show that asbestos induces PKD phosphorylation in lung epithelial cells both in vivo and in vitro. PKCδ-dependent PKD phosphorylation by asbestos is causally linked to a cellular pathway that involves the phosphorylation of both ERK1/2 and JNK1/2, which play opposing roles in the apoptotic response induced by asbestos

    Crocidolite asbestos and SV40 are cocarcinogens in human mesothelial cells and in causing mesothelioma in hamsters

    No full text
    Only a fraction of subjects exposed to asbestos develop malignant mesothelioma (MM), suggesting that additional factors may render some individuals more susceptible. We tested the hypothesis that asbestos and Simian virus (SV40) are cocarcinogens. Asbestos and SV40 in combination had a costimulatory effect in inducing ERK1/2 phosphorylation and activator protein-1 (AP-1) activity in both primary Syrian hamster mesothelial cells (SHM) and primary human mesothelial cells (HM). Ap-1 activity caused the expression and activation of matrix metalloprotease (MMP)-1 and MMP-9, which in turn led to cell invasion. Experiments using siRNA and chemical inhibitors confirmed the specificity of these results. The same effects were observed in HM and SHM. Experiments in hamsters showed strong cocarcinogenesis between asbestos and SV40: SV40 did not cause MM, asbestos caused MM in 20% of hamsters, and asbestos and SV40 together caused MM in 90% of hamsters. Significantly lower amounts of asbestos were sufficient to cause MM in animals infected with SV40. Our results indicate that mineral fibers and viruses can be cocarcinogens and suggest that lower amounts of asbestos may be sufficient to cause MM in individuals infected with SV40
    corecore