30 research outputs found

    Post-Transcriptional Control of Type I Interferon Induction by Porcine Reproductive and Respiratory Syndrome Virus in Its Natural Host Cells

    Get PDF
    Porcine reproductive and respiratory syndrome virus (PRRSV) is not only a poor inducer of type I interferon but also inhibits the efficient induction of type I interferon by porcine transmissible gastroenteritis virus (TGEV) and synthetic dsRNA molecules, Poly I:C. However, the mechanistic basis by which PRRSV interferes with the induction of type I interferon in its natural host cells remains less well defined. The purposes of this review are to summarize the key findings in supporting the post-transcriptional control of type I interferon in its natural host cells and to propose the possible role of translational control in the regulation of type I interferon induction by PRRSV

    Sustaining Interferon Induction by a High-Passage Atypical Porcine Reproductive and Respiratory Syndrome Virus Strain

    Get PDF
    Partial funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.Porcine reproductive and respiratory syndrome virus (PRRSV) strain A2MC2 induces type I interferons in cultured cells. The objective of this study was to attenuate this strain by serial passaging in MARC-145 cells and assess its virulence and immunogenicity in pigs. The A2MC2 serially passaged 90 times (A2MC2-P90) retains the feature of interferon induction. The A2MC2-P90 replicates faster with a higher virus yield than wild type A2MC2 virus. Infection of primary pulmonary alveolar macrophages (PAMs) also induces interferons. Sequence analysis showed that the A2MC2-P90 has genomic nucleic acid identity of 99.8% to the wild type but has a deletion of 543 nucleotides in nsp2. The deletion occurred in passage 60. The A2MC2-P90 genome has a total of 35 nucleotide variations from the wild type, leading to 26 amino acid differences. Inoculation of three-week-old piglets showed that A2MC2-P90 is avirulent and elicits immune response. Compared with Ingelvac PRRS® MLV strain, A2MC2-P90 elicits higher virus neutralizing antibodies. The attenuated IFN inducing A2MC2-P90 should be useful for development of an improved PRRSV vaccine

    Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus

    Get PDF
    Porcine reproductive and respiratory syndrome is a major cause of economic loss for the swine industry worldwide. Porcine reproductive and respiratory syndrome virus (PRRSV) triggers weak and atypical innate immune responses, but key genes and mechanisms by which the virus interferes with the host innate immunity have not yet been elucidated. In this study, genes that control the response of the main target of PRRSV, porcine alveolar macrophages (PAMs), were profiled in vitro with a time-course experiment spanning the first round of virus replication. PAMs were obtained from six piglets and challenged with the Lelystad PRRSV strain, and gene expression was investigated using Affymetrix microarrays and real-time PCR. Of the 1409 differentially expressed transcripts identified by analysis of variance, two, five, 25, 16 and 100 differed from controls by a minimum of 1.5-fold at 1, 3, 6, 9 and 12 h post-infection (p.i.), respectively. A PRRSV infection effect was detectable between 3 and 6 h p.i., and was characterized by a consistent downregulation of gene expression, followed by the start of the host innate immune response at 9 h p.i. The expression of beta interferon 1 (IFN-β), but not of IFN-α, was strongly upregulated, whilst few genes commonly expressed in response to viral infections and/or induced by interferons were found to be differentially expressed. A predominance of anti-apoptotic transcripts (e.g. interleukin-10), a shift towards a T-helper cell type 2 response and a weak upregulation of tumour necrosis factor-α expression were observed within 12 h p.i., reinforcing the hypotheses that PRRSV has developed sophisticated mechanisms to escape the host defence

    Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology.</p> <p>Results</p> <p>H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity.</p> <p>Conclusions</p> <p>The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified.</p

    Understanding PRRSV Infection in Porcine Lung Based on Genome-Wide Transcriptome Response Identified by Deep Sequencing

    Get PDF
    Porcine reproductive and respiratory syndrome (PRRS) has been one of the most economically important diseases affecting swine industry worldwide and causes great economic losses each year. PRRS virus (PRRSV) replicates mainly in porcine alveolar macrophages (PAMs) and dendritic cells (DCs) and develops persistent infections, antibody-dependent enhancement (ADE), interstitial pneumonia and immunosuppression. But the molecular mechanisms of PRRSV infection still are poorly understood. Here we report on the first genome-wide host transcriptional responses to classical North American type PRRSV (N-PRRSV) strain CH 1a infection using Solexa/Illumina's digital gene expression (DGE) system, a tag-based high-throughput transcriptome sequencing method, and analyse systematically the relationship between pulmonary gene expression profiles after N-PRRSV infection and infection pathology. Our results suggest that N-PRRSV appeared to utilize multiple strategies for its replication and spread in infected pigs, including subverting host innate immune response, inducing an anti-apoptotic and anti-inflammatory state as well as developing ADE. Upregulation expression of virus-induced pro-inflammatory cytokines, chemokines, adhesion molecules and inflammatory enzymes and inflammatory cells, antibodies, complement activation were likely to result in the development of inflammatory responses during N-PRRSV infection processes. N-PRRSV-induced immunosuppression might be mediated by apoptosis of infected cells, which caused depletion of immune cells and induced an anti-inflammatory cytokine response in which they were unable to eradicate the primary infection. Our systems analysis will benefit for better understanding the molecular pathogenesis of N-PRRSV infection, developing novel antiviral therapies and identifying genetic components for swine resistance/susceptibility to PRRS
    corecore