1,977 research outputs found

    A specific brain structural basis for individual differences in reality monitoring.

    Get PDF
    Much recent interest has centered on understanding the relationship between brain structure variability and individual differences in cognition, but there has been little progress in identifying specific neuroanatomical bases of such individual differences. One cognitive ability that exhibits considerable variability in the healthy population is reality monitoring; the cognitive processes used to introspectively judge whether a memory came from an internal or external source (e.g., whether an event was imagined or actually occurred). Neuroimaging research has implicated the medial anterior prefrontal cortex (PFC) in reality monitoring, and here we sought to determine whether morphological variability in a specific anteromedial PFC brain structure, the paracingulate sulcus (PCS), might underlie performance. Fifty-three healthy volunteers were selected on the basis of MRI scans and classified into four groups according to presence or absence of the PCS in their left or right hemisphere. The group with absence of the PCS in both hemispheres showed significantly reduced reality monitoring performance and ability to introspect metacognitively about their performance when compared with other participants. Consistent with the prediction that sulcal absence might mean greater volume in the surrounding frontal gyri, voxel-based morphometry revealed a significant negative correlation between anterior PFC gray matter and reality monitoring performance. The findings provide evidence that individual differences in introspective abilities like reality monitoring may be associated with specific structural variability in the PFC

    Entropic Origin of Pseudogap Physics and a Mott-Slater Transition in Cuprates

    Full text link
    We propose a new approach to understand the origin of the pseudogap in the cuprates, in terms of bosonic entropy. The near-simultaneous softening of a large number of different qq-bosons yields an extended range of short-range order, wherein the growth of magnetic correlations with decreasing temperature TT is anomalously slow. These entropic effects cause the spectral weight associated with the Van Hove singularity (VHS) to shift rapidly and nearly linearly toward half filling at higher TT, consistent with a picture of the VHS driving the pseudogap transition at a temperature T\sim T^*. As a byproduct, we develop an order-parameter classification scheme that predicts supertransitions between families of order parameters. As one example, we find that by tuning the hopping parameters, it is possible to drive the cuprates across a {\it transition between Mott and Slater physics}, where a spin-frustrated state emerges at the crossover.Comment: 24 pgs, 15 figs + Supp. Material [6pgs, 3 figs]. Major revision of arXiv:1505.0477

    Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects

    Full text link
    We analyze the influence of spatial orientation on the optical response of hydrogenated silicon quantum wires. The results are relevant for the interpretation of the optical properties of light emitting porous silicon. We study (111)-oriented wires and compare the present results with those previously obtained within the same theoretical framework for (001)-oriented wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In analogy with the (001)-oriented wires and at variance with crystalline bulk silicon, we find that the (111)-oriented wires exhibit a direct gap at k=0{\bf k}=0 whose value is largely enhanced with respect to that found in bulk silicon because of quantum confinement effects. The imaginary part of the dielectric function, for the external field polarized in the direction of the axis of the wires, shows features that, while being qualitatively similar to those observed for the (001) wires, are not present in the bulk. The main conclusion which emerges from the present study is that, if wires a few nanometers large are present in the porous material, they are optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte

    Spontaneous formation and stability of small GaP fullerenes

    Get PDF
    We report the spontaneous formation of a GaP fullerene cage in ab-initio Molecular Dynamics simulations starting from a bulk fragment. A systematic study of the geometric and electronic properties of neutral and ionized GaP clusters suggests the stability of hetero-fullerenes formed by a compound with zincblend bulk structure. We find that GaP fullerenes up to 28 atoms have high symmetry, closed electronic shells, large HOMO-LUMO energy gaps and do not dissociate when ionized. We compare our results for GaP with those obtained by other groups for the corresponding BN clusters.Comment: To appear on PRL, 4 pages, 1 figure, Late

    Domain wall tilting in the presence of the Dzyaloshinskii-Moriya interaction in out-of-plane magnetized magnetic nanotracks

    Full text link
    We show that the Dzyaloshinskii-Moriya interaction (DMI) can lead to a tilting of the domain wall (DW) surface in perpendicularly magnetized magnetic nanotracks when DW dynamics is driven by an easy axis magnetic field or a spin polarized current. The DW tilting affects the DW dynamics for large DMI and the tilting relaxation time can be very large as it scales with the square of the track width. The results are well explained by an analytical model based on a Lagrangian approach where the DMI and the DW tilting are included. We propose a simple way to estimate the DMI in a magnetic multilayers by measuring the dependence of the DW tilt angle on a transverse static magnetic field. Our results shed light on the current induced DW tilting observed recently in Co/Ni multilayers with inversion asymmetry, and further support the presence of DMI in these systems.Comment: 12 pages, 3 figures, 1 Supplementary Material

    PCV83 ADHERENCE WITH ANTIHYPERTENSIVE DRUG TREATMENT: EVIDENCE FROM PRIMARY CARE PRACTICE IN ITALY

    Get PDF

    Further search for a neutral boson with a mass around 9 MeV/c2

    Get PDF
    Two dedicated experiments on internal pair conversion (IPC) of isoscalar M1 transitions were carried out in order to test a 9 MeV/c2 X-boson scenario. In the 7Li(p,e+e-)8Be reaction at 1.1 MeV proton energy to the predominantly T=0 level at 18.15 MeV, a significant deviation from IPC was observed at large pair correlation angles. In the 11B(d,n e+e-)12C reaction at 1.6 MeV, leading to the 12.71 MeV 1+ level with pure T=0 character, an anomaly was observed at 9 MeV/c2. The compatibility of the results with the scenario is discussed.Comment: 12 pages, 5 figures, 2 table

    TIME-TRAVELLING AND MIND-TRAVELLING: EXAMINING INDIVIDUAL DIFFERENCES IN SELF-PROJECTION

    Get PDF
    It has recently been suggested that memory and theory of mind may share the characteristic of mentally projecting oneself into another time or place to imagine alternative perspectives. This study examines this possible relationship by investigating individual differences in performance on a reality monitoring task and two mentalising tasks: the faux pas task and the reading the mind in the eyes test. Consistent with recent functional neuroimaging studies that have observed activity during reality monitoring tasks in the same region of prefrontal cortex that was activated in previous mentalising studies, a significant positive correlation in performance was observed between memory for agency and faux-pas recognition. No correlation between memory and performance on the reading the mind in the eyes test was observed. The significance of these findings is discussed with respect to the suggestion that memory and theory of mind rely on a common set of processes
    corecore