496 research outputs found

    On staying grounded and avoiding Quixotic dead ends

    Get PDF
    The 15 articles in this special issue on The Representation of Concepts illustrate the rich variety of theoretical positions and supporting research that characterize the area. Although much agreement exists among contributors, much disagreement exists as well, especially about the roles of grounding and abstraction in conceptual processing. I first review theoretical approaches raised in these articles that I believe are Quixotic dead ends, namely, approaches that are principled and inspired but likely to fail. In the process, I review various theories of amodal symbols, their distortions of grounded theories, and fallacies in the evidence used to support them. Incorporating further contributions across articles, I then sketch a theoretical approach that I believe is likely to be successful, which includes grounding, abstraction, flexibility, explaining classic conceptual phenomena, and making contact with real-world situations. This account further proposes that (1) a key element of grounding is neural reuse, (2) abstraction takes the forms of multimodal compression, distilled abstraction, and distributed linguistic representation (but not amodal symbols), and (3) flexible context-dependent representations are a hallmark of conceptual processing

    Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery

    Get PDF
    Chagas' disease is responsible for significant mortality and morbidity in Latin America. Current treatments display variable efficacy and have adverse side effects, hence more effective, better tolerated drugs are needed. However, recent efforts have proved unsuccessful with failure of the ergosterol biosynthesis inhibitor posaconazole in phase II clinical trials despite promising in vitro and in vivo studies. The lack of translation between laboratory experiments and clinical outcome is a major issue for further drug discovery efforts. Our goal was to identify cell-based assays that could differentiate current nitro-aromatic drugs nifurtimox and benznidazole from posaconazole. Using a panel of T. cruzi strains including the six major lineages (TcI-VI), we found that strain PAH179 (TcV) was markedly less susceptible to posaconazole in vitro. Determination of parasite doubling and cycling times as well as EdU labelling experiments all indicate that this lack of sensitivity is due to the slow doubling and cycling time of strain PAH179. This is in accordance with ergosterol biosynthesis inhibition by posaconazole leading to critically low ergosterol levels only after multiple rounds of division, and is further supported by the lack of effect of posaconazole on the non-replicative trypomastigote form. A washout experiment with prolonged posaconazole treatment showed that, even for more rapidly replicating strains, this compound cannot clear all parasites, indicative of a heterogeneous parasite population in vitro and potentially the presence of quiescent parasites. Benznidazole in contrast was able to kill all parasites. The work presented here shows clear differentiation between the nitro-aromatic drugs and posaconazole in several assays, and suggests that in vitro there may be clinically relevant heterogeneity in the parasite population that can be revealed in long-term washout experiments. Based on these findings we have adjusted our in vitro screening cascade so that only the most promising compounds are progressed to in vivo experiments

    The Interleukin 3 Gene (IL3) Contributes to Human Brain Volume Variation by Regulating Proliferation and Survival of Neural Progenitors

    Get PDF
    One of the most significant evolutionary changes underlying the highly developed cognitive abilities of humans is the greatly enlarged brain volume. In addition to being far greater than in most other species, the volume of the human brain exhibits extensive variation and distinct sexual dimorphism in the general population. However, little is known about the genetic mechanisms underlying normal variation as well as the observed sex difference in human brain volume. Here we show that interleukin-3 (IL3) is strongly associated with brain volume variation in four genetically divergent populations. We identified a sequence polymorphism (rs31480) in the IL3 promoter which alters the expression of IL3 by affecting the binding affinity of transcription factor SP1. Further analysis indicated that IL3 and its receptors are continuously expressed in the developing mouse brain, reaching highest levels at postnatal day 1–4. Furthermore, we found IL3 receptor alpha (IL3RA) was mainly expressed in neural progenitors and neurons, and IL3 could promote proliferation and survival of the neural progenitors. The expression level of IL3 thus played pivotal roles in the expansion and maintenance of the neural progenitor pool and the number of surviving neurons. Moreover, we found that IL3 activated both estrogen receptors, but estrogen didn’t directly regulate the expression of IL3. Our results demonstrate that genetic variation in the IL3 promoter regulates human brain volume and reveals novel roles of IL3 in regulating brain development

    Specifically Progressive Deficits of Brain Functional Marker in Amnestic Type Mild Cognitive Impairment

    Get PDF
    Background: Deficits of the default mode network (DMN) have been demonstrated in subjects with amnestic type mild cognitive impairment (aMCI) who have a high risk of developing Alzheimer’s disease (AD). However, no longitudinal study of this network has been reported in aMCI. Identifying links between development of DMN and aMCI progression would be of considerable value in understanding brain changes underpinning aMCI and determining risk of conversion to AD. Methodology/Principal Findings: Resting-state fMRI was acquired in aMCI subjects (n = 26) and controls (n = 18) at baseline and after approximately 20 months follow up. Independent component analysis was used to isolate the DMN in each participant. Differences in DMN between aMCI and controls were examined at baseline, and subsequent changes between baseline and follow-up were also assessed in the groups. Posterior cingulate cortex/precuneus (PCC/PCu) hyper-functional connectivity was observed at baseline in aMCI subjects, while a substantial decrement of these connections was evident at follow-up in aMCI subjects, compared to matched controls. Specifically, PCC/PCu dysfunction was positively related to the impairments of episodic memory from baseline to follow up in aMCI group. Conclusions/Significance: The patterns of longitudinal deficits of DMN may assist investigators to identify and monitor the development of aMCI

    Methylphenidate significantly improves declarative memory functioning of adults with ADHD

    Get PDF
    Contains fulltext : 87790.pdf (publisher's version ) (Closed access)BACKGROUND: Declarative memory deficits are common in untreated adults with attention-deficit hyperactivity disorder (ADHD), but limited evidence exists to support improvement after treatment with methylphenidate. The objective of this study was to examine the effects of methylphenidate on memory functioning of adults with ADHD. METHODS: Eighteen adults with ADHD who were clinical responders to methylphenidate participated in this randomized crossover trial. After 3 days of no treatment, patients received in random order either their usual methylphenidate dose (mean: 14.7 mg; range: 10-30 mg) or placebo, separated by a 6-7-day washout period. Patients performed an immediate word recall test 1 h after treatment administration. Three hours after intake, patients performed the second part of the memory test (delayed word recall and a recognition test). RESULTS: Delayed recognition and immediate recall was similar on treatment and on placebo. Delayed word recall was significantly better in the methylphenidate than in the placebo condition (F (1, 17) = 7.0, p < 0.017). A significant correlation was found between prestudy CES-D depression scores and difference scores on delayed recall (r = 0.602, p < 0.008). CONCLUSION: Methylphenidate improves declarative memory functioning in patients with ADHD. New studies should further examine whether subclinical depressive symptoms mediate the effect of methylphenidate on declarative memory.1 oktober 201

    Imaging of Functional Connectivity in the Mouse Brain

    Get PDF
    Functional neuroimaging (e.g., with fMRI) has been difficult to perform in mice, making it challenging to translate between human fMRI studies and molecular and genetic mechanisms. A method to easily perform large-scale functional neuroimaging in mice would enable the discovery of functional correlates of genetic manipulations and bridge with mouse models of disease. To satisfy this need, we combined resting-state functional connectivity mapping with optical intrinsic signal imaging (fcOIS). We demonstrate functional connectivity in mice through highly detailed fcOIS mapping of resting-state networks across most of the cerebral cortex. Synthesis of multiple network connectivity patterns through iterative parcellation and clustering provides a comprehensive map of the functional neuroarchitecture and demonstrates identification of the major functional regions of the mouse cerebral cortex. The method relies on simple and relatively inexpensive camera-based equipment, does not require exogenous contrast agents and involves only reflection of the scalp (the skull remains intact) making it minimally invasive. In principle, fcOIS allows new paradigms linking human neuroscience with the power of molecular/genetic manipulations in mouse models

    Expert Financial Advice Neurobiologically “Offloads” Financial Decision-Making under Risk

    Get PDF
    BACKGROUND: Financial advice from experts is commonly sought during times of uncertainty. While the field of neuroeconomics has made considerable progress in understanding the neurobiological basis of risky decision-making, the neural mechanisms through which external information, such as advice, is integrated during decision-making are poorly understood. In the current experiment, we investigated the neurobiological basis of the influence of expert advice on financial decisions under risk. METHODOLOGY/PRINCIPAL FINDINGS: While undergoing fMRI scanning, participants made a series of financial choices between a certain payment and a lottery. Choices were made in two conditions: 1) advice from a financial expert about which choice to make was displayed (MES condition); and 2) no advice was displayed (NOM condition). Behavioral results showed a significant effect of expert advice. Specifically, probability weighting functions changed in the direction of the expert's advice. This was paralleled by neural activation patterns. Brain activations showing significant correlations with valuation (parametric modulation by value of lottery/sure win) were obtained in the absence of the expert's advice (NOM) in intraparietal sulcus, posterior cingulate cortex, cuneus, precuneus, inferior frontal gyrus and middle temporal gyrus. Notably, no significant correlations with value were obtained in the presence of advice (MES). These findings were corroborated by region of interest analyses. Neural equivalents of probability weighting functions showed significant flattening in the MES compared to the NOM condition in regions associated with probability weighting, including anterior cingulate cortex, dorsolateral PFC, thalamus, medial occipital gyrus and anterior insula. Finally, during the MES condition, significant activations in temporoparietal junction and medial PFC were obtained. CONCLUSIONS/SIGNIFICANCE: These results support the hypothesis that one effect of expert advice is to "offload" the calculation of value of decision options from the individual's brain

    Age-related changes in neural functional connectivity and its behavioral relevance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Resting-state recordings are characterized by widely distributed networks of coherent brain activations. Disturbances of the default network - a set of regions that are deactivated by cognitive tasks and activated during passive states - have been detected in age-related disorders such as Alzheimer's or Parkinson's disease but alterations in the course of healthy aging still need to be explored.</p> <p>Results</p> <p>Using magnetoencephalography (MEG), the present study investigated how age-related functional resting-state brain connectivity links to cognitive performance in healthy aging in fifty-three participants ranging in age from 18 to 89 years. A beamforming technique was used to reconstruct the brain activity in source space and the interregional coupling was investigated using partial directed coherence (PDC). We found significant age-related alterations of functional resting-state connectivity. These are mainly characterized by reduced information input into the posterior cingulum/precuneus region together with an enhanced information flow to the medial temporal lobe. Furthermore, higher inflow in the medial temporal lobe subsystem was associated with weaker cognitive performance whereas stronger inflow in the posterior cluster was related to better cognitive performance.</p> <p>Conclusion</p> <p>This is the first study to show age-related alterations in subsystems of the resting state network that are furthermore associated with cognitive performance.</p

    Combination of RGD Compound and Low-Dose Paclitaxel Induces Apoptosis in Human Glioblastoma Cells

    Get PDF
    ) peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX) pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells.This study provides a novel concept of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment
    corecore