65 research outputs found

    Effect of Peierls transition in armchair carbon nanotube on dynamical behaviour of encapsulated fullerene

    Get PDF
    The changes of dynamical behaviour of a single fullerene molecule inside an armchair carbon nanotube caused by the structural Peierls transition in the nanotube are considered. The structures of the smallest C20 and Fe@C20 fullerenes are computed using the spin-polarized density functional theory. Significant changes of the barriers for motion along the nanotube axis and rotation of these fullerenes inside the (8,8) nanotube are found at the Peierls transition. It is shown that the coefficients of translational and rotational diffusions of these fullerenes inside the nanotube change by several orders of magnitude. The possibility of inverse orientational melting, i.e. with a decrease of temperature, for the systems under consideration is predicted.Comment: 9 pages, 6 figures, 1 tabl

    Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

    Get PDF
    A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.Coordinated Research Projects CGL2010-20748-C02-01 (AGC, EMH) and 02 (CS) (DGI, Spanish MICINN); the Research Group RNM363 (Consejería de Economía, Investigación, Ciencia y Empleo, Junta de Andalucía); and the FP7 COST Action TD0903 of the European Community

    Healable Cellulose Iontronic Hydrogel Stickers for Sustainable Electronics on Paper

    Get PDF
    The authors acknowledge the support from FCT - Portuguese Foundation for Science and Technology through the Ph.D. scholarships SFRH/BD/126409/2016 (I.C.) and SFRH/BD/122286/2016 (J.M.). The authors would like to acknowledge the European Commission under project NewFun (ERC-StG-2014, GA 640598) and project SYNERGY (H2020-WIDESPREAD-2020-5, CSA, proposal no 952169). This work was also supported by the FEDER funds through the COMPETE 2020 Program and the National Funds through the FCT - Portuguese Foundation for Science and Technology under the Project No. POCI-01-0145-FEDER-007688, reference UID/CTM/50025, project CHIHC, reference PTDC/NAN-MAT/32558/2017. The authors would also like to thank their colleagues Daniela Gomes and Ana Pimentel from CENIMAT/i3N for the SEM and DSC-TGA measurements, respectively.Novel nature-based engineered functional materials combined with sustainable and economically efficient processes are among the great challenges for the future of mankind. In this context, this work presents a new generation of versatile flexible and highly conformable regenerated cellulose hydrogel electrolytes with high ionic conductivity and self-healing ability, capable of being (re)used in electrical and electrochemical devices. They can be provided in the form of stickers and easily applied as gate dielectric onto flexible indium–gallium–zinc oxide transistors, decreasing the manufacturing complexity. Flexible and low-voltage (<2.5 V) circuits can be handwritten on-demand on paper transistors for patterning of conductive/resistive lines. This user-friendly and simplified manufacturing approach holds potential for fast production of low-cost, portable, disposable/recyclable, and low-power ion-controlled electronics on paper, making it attractive for application in sensors and concepts such as the “Internet-on-Things.”.publishersversionpublishe

    Second Order Perturbations in the Randall-Sundrum Infinite Brane-World Model

    Get PDF
    We discuss the non-linear gravitational interactions in the Randall-Sundrum single brane model. If we naively write down the 4-dimensional effective action integrating over the fifth dimension with the aid of the decomposition with respect to eigen modes of 4-dimensional d'Alembertian, the Kaluza-Klein mode coupling seems to be ill-defined. We carefully analyze second order perturbations of the gravitational field induced on the 3-brane under the assumption of the static and axial-symmetric 5-dimensional metric. It is shown that there remains no pathological feature in the Kaluza-Klein mode coupling after the summation over all different mass modes. Furthermore, the leading Kaluza-Klein corrections are shown to be sufficiently suppressed in comparison with the leading order term which is obtained by the zero mode truncation. We confirm that the 4-dimensional Einstein gravity is approximately recovered on the 3-brane up to second order perturbations.Comment: 15 pages, 2 figures, comment and reference added, typos correcte

    An Approximate Method for Predicting Peak Transient Responses

    No full text

    Mechanical Advantage of Single-Input and Multiple-Output Ports Mechanical Device

    No full text
    The mechanical advantage concept has long been used as a measure of design efficiency of mechanical systems, whose function it is to respond by exerting a certain amount of force at the output for a corresponding input force. The mechanical advantage of a device is characterized by a ratio of the output force to the input force, for the instant in consideration. Traditionally, only single-input and single-output port devices have been analyzed for mechanical advantage. The simplicity of such a configuration makes for tractable analysis by one or more methods available. This paper enunciates a more general mechanical device problem containing single-input and multiple-output ports. In particular, emphasis is placed on a single-input and functionally related multiple-output ports device. Its treatment facilitates efficient design of such a device, as exemplified in this paper
    corecore