25 research outputs found

    Pyrin Modulates the Intracellular Distribution of PSTPIP1

    Get PDF
    PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome

    Constitutively Activated NLRP3 Inflammasome Causes Inflammation and Abnormal Skeletal Development in Mice

    Get PDF
    The NLRP3 inflammasome complex is responsible for maturation of the pro-inflammatory cytokine, IL-1β. Mutations in NLRP3 are responsible for the cryopyrinopathies, a spectrum of conditions including neonatal-onset multisystem inflammatory disease (NOMID). While excessive production of IL-1β and systemic inflammation are common to all cryopyrinopathy disorders, skeletal abnormalities, prominently in the knees, and low bone mass are unique features of patients with NOMID. To gain insights into the mechanisms underlying skeletal abnormalities in NOMID, we generated knock-in mice globally expressing the D301N NLRP3 mutation (ortholog of D303N in human NLRP3). NOMID mice exhibit neutrophilia in blood and many tissues, including knee joints, and high levels of serum inflammatory mediators. They also exhibit growth retardation and severe postnatal osteopenia stemming at least in part from abnormally accelerated bone resorption, attended by increased osteoclastogenesis. Histologic analysis of knee joints revealed abnormal growth plates, with loss of chondrocytes and growth arrest in the central region of the epiphyses. Most strikingly, a tissue “spike" was observed in the mid-region of the growth plate in the long bones of all NOMID mice that may be the precursor to more severe deformations analogous to those observed in NOMID patients. These findings provide direct evidence linking a NOMID-associated NLRP3-activating mutation to abnormalities of postnatal skeletal growth and bone remodeling

    Autoinflammation: translating mechanism to therapy

    No full text
    Review discusses autoinflammatory diseases as a new classification of immune disorders due to dysregulated innate immunity yet sensitive to targeted cytokine therapy

    The B-box/coiled-coil region of pyrin is required for reticularization of PSTPIP1 filaments.

    No full text
    <p>Portions of pyrin's B-box and coiled-coil region (all myc tagged), were co-transfected with PSTPIP1-FLAG. (A–B) Pyrin exons 2–3 or (C–D) exons 4–5 do not bind PSTPIP1 filaments. Note that PSTPIP1 filaments (A,C) are generally straight. (E–F) Pyrin exons 2–4 decorates PSTPIP1 filaments, but does not alter their distribution. (G–I) The B-box and coiled-coil region of pyrin, encoded by exons 3–5, binds to and remodels PSTPIP1 filaments.</p

    Pyrin recruits PSTPIP1 to ASC specks.

    No full text
    <p>All images are from transfected COS cells. Representative images are shown. (A) The apoptotic speck protein, ASC (red), is normally diffusely distributed throughout the cell in cytoplasm and nucleus. (B) ASC (in this case, green) can coalesce into a small perinuclear aggregate, the speck. (C–D) Pyrin (red) is recruited to ASC specks via its PyD as previously shown <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0006147#pone.0006147-Richards1" target="_blank">[32]</a>. (E–G) PSTPIP1 is not detected in ASC specks in the absence of co-transfected pyrin. (H–J) In 70% of cells transfected with untagged ASC, PSTPIP1-FLAG and pyrin-myc, PSTPIP1 is recruited to the speck (arrow, H). (K–P) In 30% of cases, transfection of the three proteins results in localization of pyrin in both PSTPIP1 filaments and in the speck (K–M), or exclusively in the speck (N–P). (Q–S) FLAG-tagged W232A PSTPIP1 does not interact with pyrin, and is not recruited to specks. (T–Y) Recruitment of PAPA mutants by myc-pyrin to the ASC speck. (T–V) A230T-FLAG. (W–Y) E250Q-FLAG. Pyrin recruits these mutant forms to ASC specks in 95% of transfected cells.</p
    corecore