368 research outputs found

    Stabilization of Pd3−xIn1+x polymorphs with Pd-like crystal structure and their superior performance as catalysts for semi-hydrogenation of alkynes

    Get PDF
    Selective hydrogenation (semi-hydrogenation) reactions of alkynes rely on Pd-based catalysts to provide the correct pathway to favour formation of double bonds and avoid full hydrogenation to single bonds. Here, we present the preparation and characterisation of "Pd3In"/TiO2 nanocatalysts, which show improved activity and selectivity compared to pure Pd catalysts, towards the liquid phase semi-hydrogenation of 2-methyl-3-butyn-2-ol (MBY) to 2-methyl-3-buten-2-ol (MBE), a fundamental step in the preparation of pharmaceuticals, and other industrially produced substances, as well as a model reaction for the semi-hydrogenation of alkynes. For both the supported and unsupported "Pd3In" alloys (later redefined as Pd3-xIn1+x), we stabilised two new cubic polymorphs with a Pd-like structure, instead of the tetragonal structure as reported so far in the literature. The stabilisation of these new polymorphs was made possible by using a solution-based synthesis and, thanks to the use of different solvents, the reaction was 2 carried out at different temperatures and the Pd/In ratio could be tuned. The same synthetic approach was adapted to prepare two "Pd3In"/TiO2 catalysts by adding the TiO2 support to the reaction mixture, in a practical one-step, one-pot reaction. HREM and X-Ray maps show that the cubic crystal structure of "Pd3In" is maintained when prepared in the presence of the support, however, the support seems to influence the Pd/In ratio

    Predicion of charge separation in GaAs/AlAs cylindrical Russian Doll nanostructures

    Full text link
    We have contrasted the quantum confinement of (i) multiple quantum wells of flat GaAs and AlAs layers, i.e. (\GaAs)_{m}/(\AlAs)_n/(\GaAs)_p/(\AlAs)_q, with (ii) ``cylindrical Russian Dolls'' -- an equivalent sequence of wells and barriers arranged as concentric wires. Using a pseudopotential plane-wave calculation, we identified theoretically a set of numbers (m,n,pm,n,p and qq) such that charge separation can exist in ``cylindrical Russian Dolls'': the CBM is localized in the inner GaAs layer, while the VBM is localized in the outer GaAs layer.Comment: latex, 8 page

    Adopting Weight-Based Dosing With Pharmacy-Level Stewardship Strategies Could Reduce Cancer Drug Spending By Millions

    Get PDF
    Immune checkpoint inhibitors, a class of drugs used in approximately forty unique cancer indications, are a sizable component of the economic burden of cancer care in the US. Instead of personalized weight-based dosing, immune checkpoint inhibitors are most commonly administered at one-size-fits-all flat doses that are higher than necessary for the vast majority of patients. We hypothesized that personalized weight-based dosing along with common stewardship efforts at the pharmacy level, such as dose rounding and vial sharing, would lead to reductions in immune checkpoint inhibitor use and lower spending. Using data from the Veterans Health Administration (VHA) and Medicare drug prices, we estimated reductions in immune checkpoint inhibitor use and spending that would be associated with pharmacy-level stewardship strategies, in a case-control simulation study of individual patient-level immune checkpoint inhibitor administration events. We identified baseline annual VHA spending for these drugs of approximately 537million.Combiningweightbaseddosing,doserounding,andpharmacylevelvialsharingwouldgenerateexpectedannualVHAhealthsystemsavingsof537 million. Combining weight-based dosing, dose rounding, and pharmacy-level vial sharing would generate expected annual VHA health system savings of 74 million (13.7 percent). We conclude that adoption of pharmacologically justified immune checkpoint inhibitor stewardship measures would generate sizable reductions in spending for these drugs. Combining these operational innovations with value-based drug price negotiation enabled by recent policy changes may improve the long-term financial viability of cancer care in the US

    Impacts of Social Distancing Policies on Mobility and COVID-19 Case Growth in the US

    Full text link
    Social distancing remains an important strategy to combat the COVID-19 pandemic in the United States. However, the impacts of specific state-level policies on mobility and subsequent COVID-19 case trajectories have not been completely quantified. Using anonymized and aggregated mobility data from opted-in Google users, we found that state-level emergency declarations resulted in a 9.9% reduction in time spent away from places of residence. Implementation of one or more social distancing policies resulted in an additional 24.5% reduction in mobility the following week, and subsequent shelter-in-place mandates yielded an additional 29.0% reduction. Decreases in mobility were associated with substantial reductions in case growth 2 to 4 weeks later. For example, a 10% reduction in mobility was associated with a 17.5% reduction in case growth 2 weeks later. Given the continued reliance on social distancing policies to limit the spread of COVID-19, these results may be helpful to public health officials trying to balance infection control with the economic and social consequences of these policies.Comment: Co-first Authors: GAW, SV, VE, and AF contributed equally. Corresponding Author: Dr. Evgeniy Gabrilovich, [email protected] 32 pages (including supplemental material), 4 figures in the main text, additional figures in the supplemental materia

    Mild Transient Hypercapnia as a Novel Fear Conditioning Stimulus Allowing Re-Exposure during Sleep

    Get PDF
    Introduction:Studies suggest that sleep plays a role in traumatic memories and that treatment of sleep disorders may help alleviate symptoms of posttraumatic stress disorder. Fear-conditioning paradigms in rodents are used to investigate causal mechanisms of fear acquisition and the relationship between sleep and posttraumatic behaviors. We developed a novel conditioning stimulus (CS) that evoked fear and was subsequently used to study re-exposure to the CS during sleep.Methods:Experiment 1 assessed physiological responses to a conditioned stimulus (mild transient hypercapnia, mtHC; 3.0% CO2; n = 17)+footshock for the purpose of establishing a novel CS in male FVB/J mice. Responses to the novel CS were compared to tone+footshock (n = 18) and control groups of tone alone (n = 17) and mild transient hypercapnia alone (n = 10). A second proof of principle experiment re-exposed animals during sleep to mild transient hypercapnia or air (control) to study sleep processes related to the CS.Results:Footshock elicited a response of acute tachycardia (30-40 bpm) and increased plasma epinephrine. When tone predicted footshock it elicited mild hypertension (1-2 mmHg) and a three-fold increase in plasma epinephrine. When mtHC predicted footshock it also induced mild hypertension, but additionally elicited a conditioned bradycardia and a smaller increase in plasma epinephrine. The overall mean 24 hour sleep-wake profile was unaffected immediately after fear conditioning.Discussion:Our study demonstrates the efficacy of mtHC as a conditioning stimulus that is perceptible but innocuous (relative to tone) and applicable during sleep. This novel model will allow future studies to explore sleep-dependent mechanisms underlying maladaptive fear responses, as well as elucidate the moderators of the relationship between fear responses and sleep. © 2013 McDowell et al

    Determining the ERK-regulated phosphoproteome driving KRAS-mutant cancer

    Get PDF
    To delineate the mechanisms by which the ERK1 and ERK2 mitogen-activated protein kinases support mutant KRAS-driven cancer growth, we determined the ERK-dependent phosphoproteome in KRAS-mutant pancreatic cancer. We determined that ERK1 and ERK2 share near-identical signaling and transforming outputs and that the KRAS-regulated phosphoproteome is driven nearly completely by ERK. We identified 4666 ERK-dependent phosphosites on 2123 proteins, of which 79 and 66%, respectively, were not previously associated with ERK, substantially expanding the depth and breadth of ERK-dependent phosphorylation events and revealing a considerably more complex function for ERK in cancer. We established that ERK controls a highly dynamic and complex phosphoproteome that converges on cyclin-dependent kinase regulation and RAS homolog guanosine triphosphatase function (RHO GTPase). Our findings establish the most comprehensive molecular portrait and mechanisms by which ERK drives KRAS-dependent pancreatic cancer growth

    Defining the KRAS- and ERK-dependent transcriptome in KRAS-mutant cancers

    Get PDF
    How the KRAS oncogene drives cancer growth remains poorly understood. Therefore, we established a systemwide portrait of KRAS- and extracellular signal-regulated kinase (ERK)-dependent gene transcription in KRAS-mutant cancer to delineate the molecular mechanisms of growth and of inhibitor resistance. Unexpectedly, our KRAS-dependent gene signature diverges substantially from the frequently cited Hallmark KRAS signaling gene signature, is driven predominantly through the ERK mitogen-activated protein kinase (MAPK) cascade, and accurately reflects KRAS- and ERK-regulated gene transcription in KRAS-mutant cancer patients. Integration with our ERK-regulated phospho- and total proteome highlights ERK deregulation of the anaphase promoting complex/cyclosome (APC/C) and other components of the cell cycle machinery as key processes that drive pancreatic ductal adenocarcinoma (PDAC) growth. Our findings elucidate mechanistically the critical role of ERK in driving KRAS-mutant tumor growth and in resistance to KRAS-ERK MAPK targeted therapies

    Mass balance of the Greenland Ice Sheet from 1992 to 2018

    Get PDF
    In recent decades, the Greenland Ice Sheet has been a major contributor to global sea-level rise1,2, and it is expected to be so in the future3. Although increases in glacier flow4–6 and surface melting7–9 have been driven by oceanic10–12 and atmospheric13,14 warming, the degree and trajectory of today’s imbalance remain uncertain. Here we compare and combine 26 individual satellite measurements of changes in the ice sheet’s volume, flow and gravitational potential to produce a reconciled estimate of its mass balance. Although the ice sheet was close to a state of balance in the 1990s, annual losses have risen since then, peaking at 335 ± 62 billion tonnes per year in 2011. In all, Greenland lost 3,800 ± 339 billion tonnes of ice between 1992 and 2018, causing the mean sea level to rise by 10.6 ± 0.9 millimetres. Using three regional climate models, we show that reduced surface mass balance has driven 1,971 ± 555 billion tonnes (52%) of the ice loss owing to increased meltwater runoff. The remaining 1,827 ± 538 billion tonnes (48%) of ice loss was due to increased glacier discharge, which rose from 41 ± 37 billion tonnes per year in the 1990s to 87 ± 25 billion tonnes per year since then. Between 2013 and 2017, the total rate of ice loss slowed to 217 ± 32 billion tonnes per year, on average, as atmospheric circulation favoured cooler conditions15 and as ocean temperatures fell at the terminus of Jakobshavn Isbræ16. Cumulative ice losses from Greenland as a whole have been close to the IPCC’s predicted rates for their high-end climate warming scenario17, which forecast an additional 50 to 120 millimetres of global sea-level rise by 2100 when compared to their central estimate

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice
    corecore