2,901 research outputs found
Long-Run Macroeconomic Determinants of Cancer Incidence
yesAbstract: Background: Understanding how cancer incidence evolves during economic growth is useful for forecasting the economic impact of cancerous diseases, and for governing the process of resources allocation in planning health services. We analyse the relationship between economic growth and cancer incidence in order to describe and measure the influence of an increasing real per capita income on the overall rate of cancer incidence.
Method:We test the relationship between real per capita income and the overall rate of cancer incidence with a cross-sectional analysis, using data from the World Bank and the World Health Organization databases, for 165 countries in 2008. We measure the elasticity of cancer incidence with respect to per capita income, and we decompose the elasticities coefficients into two components: age-effect and lifestyle-effect.
Results: An Engel’s model, in a double-log quadratic specification, explains about half of the variations in the age-standardised rates and nearly two thirds of the variations in the incidence crude rates. All the elasticities of the crude rates are positive, but less than one. The income elasticity of the age-standardised rates are negative in lower income countries, and positive (around 0.25 and 0.32) in upper middle and high income countries, respectively.
Conclusions:These results are used to develop a basic framework in order to explain how demand-side economic structural changes may affect the long run evolution of cancer incidence. At theoretical level, a J-Curve is a possible general model to represents, other things being equal, how economic growth influence cancer incidence
Constrained-Transport Magnetohydrodynamics with Adaptive-Mesh-Refinement in CHARM
We present the implementation of a three-dimensional, second order accurate
Godunov-type algorithm for magneto-hydrodynamic (MHD), in the
adaptive-mesh-refinement (AMR) cosmological code {\tt CHARM}. The algorithm is
based on the full 12-solve spatially unsplit Corner-Transport-Upwind (CTU)
scheme. The fluid quantities are cell-centered and are updated using the
Piecewise-Parabolic-Method (PPM), while the magnetic field variables are
face-centered and are evolved through application of the Stokes theorem on cell
edges via a Constrained-Transport (CT) method. The multidimensional MHD source
terms required in the predictor step for high-order accuracy are applied in a
simplified form which reduces their complexity in three dimensions without loss
of accuracy or robustness. The algorithm is implemented on an AMR framework
which requires specific synchronization steps across refinement levels. These
include face-centered restriction and prolongation operations and a {\it
reflux-curl} operation, which maintains a solenoidal magnetic field across
refinement boundaries. The code is tested against a large suite of test
problems, including convergence tests in smooth flows, shock-tube tests,
classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud
interaction problem and the formation of a cluster of galaxies in a fully
cosmological context. The magnetic field divergence is shown to remain
negligible throughout.Comment: 53 pages, 17 figs, under review by ApJ
Computer simulation of bistable switching in a nematic device containing pear-shaped particles
We study the microscopic basis of bistable switching of a confined liquid crystal via Monte Carlo simulations of hard pear-shaped particles. Using both dielectric and dipolar field couplings to this intrinsically flexoelectric fluid, it is shown that pulsed fields of opposing polarity can be used to switch between the vertical and
hybrid aligned states. Further, it is shown that the field-susceptibility of the surface polarisation, rather than the bulk flexoelectricity, is the main driver of this switching
behaviour.</p
Sensemaking and Success in the Transition from Community Colleges to University IS/CS/CE Programs
Increasing the enrollment of women, minority, and other underrepresented populations in undergraduate information systems and computing programs is an important social issue. We explore ways of attracting and retaining community college transfer students—an important source of underrepresented students —by examining their sensemaking efforts as they transition to four-year universities. We conducted a qualitative study to test sensemaking theory and develop recommendations for retaining community college transfer students in undergraduate information systems, computer science, and computer engineering programs
Interfacial motion in flexo- and order-electric switching between nematic filled states
We consider a nematic liquid crystal, in coexistence with its isotropic
phase, in contact with a substrate patterned with rectangular grooves. In such
a system, the nematic phase may fill the grooves without the occurrence of
complete wetting. There may exist multiple (meta)stable filled states, each
characterised by the type of distortion (bend or splay) in each corner of the
groove and by the shape of the nematic-isotropic interface, and additionally
the plateaux that separate the grooves may be either dry or wet with a thin
layer of nematic. Using numerical simulations, we analyse the dynamical
response of the system to an externally- applied electric field, with the aim
of identifying switching transitions between these filled states. We find that
order-electric coupling between the fluid and the field provides a means of
switching between states where the plateaux between grooves are dry and states
where they are wet by a nematic layer, without affecting the configuration of
the nematic within the groove. We find that flexoelectric coupling may change
the nematic texture in the groove, provided that the flexoelectric coupling
differentiates between the types of distortion at the corners of the substrate.
We identify intermediate stages of the transitions, and the role played by the
motion of the nematic-isotropic interface. We determine quantitatively the
field magnitudes and orientations required to effect each type of transition.Comment: 14 pages, 12 fig
Effect of therapeutic plasma exchange on immunoglobulins in myasthenia gravis
An integrated understanding of therapeutic plasma exchange (TPE) effects on immunoglobulins, autoantibodies, and natural or acquired (vaccine) protective antibodies in patients with autoimmune myasthenia gravis (MG) is lacking. Prior studies measured TPE effects in healthy volunteers or heterogeneous autoimmune diseases populations. We prospectively profiled plasma IgA, IgM, IgG, IgG subclasses (IgG1-4), acetylcholine receptor autoantibodies (AChR+), and protective antibodies in patients with AChR+ MG receiving TPE for an exacerbation. TPE was performed according to institutional practice and patients were profiled for up to 12 weeks. Ten patients were enrolled (median age=72.9 years; baseline MG-Composite=21; median TPE treatments=6 during their first course) and all improved. The maximum decrease in all immunoglobulins, including AChR autoantibodies, was achieved on the final day of the first TPE course (approximately 60–70% reduction). Three weeks post-TPE mean AChR autoantibody, total IgG, IgG1 and IgG2 titers were below the reference range and had not recovered to within 20% of baseline, whereas other measured immunoglobulins approached baseline values. We did not generally observe an “overshoot” of immunoglobulins above pre-TPE levels or accelerated recovery of pathologic AChR autoantibodies. Protective antibody profiles showed similar patterns as other IgGs and were detectable at levels associated with protection from infection. A slow return to baseline for IgGs (except IgG3) was observed, and we did not observe any obvious effect of concomitant medications on this recovery. Collectively, these findings enhance our understanding of the immunological effects of TPE and further supports the concept of rapid immunoglobulin depletion for the treatment of patients with MG
Synchronisation of Policy Related Uncertainty, Financial Stress and Economic Activity in the USA
This study analyses the synchronisation of economic activity, financial stress and uncertainty in the USA by employing a wavelet-based approach of cohesion. Being innovative in the choice of the methodological framework as well as underlying factors of interest, we employed the monthly data on the policy-related uncertainty indexes, Chicago Fed National Activity Index (CFNAI) and Kansas City Federal Reserve Financial Stress Index (KCFSI). Our key empirical findings suggest that the co-movements of policy uncertainty, financial stress and economic activity are frequencies as well as time-dependent. The uncertainty indices are found to be synchronised at lower and intermediate frequencies for all of the pairs. In the nexus between uncertainty and economic activity, financial stress plays a crucial role. Co-movement of the policy uncertainty is observed to be more pronounced during the crisis periods though at different frequencies which indicated the usefulness of the proposed framework to analyse the implications of contemporaneous policy uncertainty and financial stress for the real economy. Concomitantly this informs the policy efforts to address the financial and economic instabilities which may arise as a consequence of financial stress and policy uncertainty
Effect of Self-monitoring and Medication Self-titration on Systolic Blood Pressure in Hypertensive Patients at High Risk of Cardiovascular Disease
IMPORTANCE: Self-monitoring of blood pressure with self-titration of antihypertensives (self-management) results in lower blood pressure in patients with hypertension, but there are no data about patients in high-risk groups.
OBJECTIVE: To determine the effect of self-monitoring with self-titration of antihypertensive medication compared with usual care on systolic blood pressure among patients with cardiovascular disease, diabetes, or chronic kidney disease.
DESIGN, SETTING, AND PATIENTS: A primary care, unblinded, randomized clinical trial involving 552 patients who were aged at least 35 years with a history of stroke, coronary heart disease, diabetes, or chronic kidney disease and with baseline blood pressure of at least 130/80 mm Hg being treated at 59 UK primary care practices was conducted between March 2011 and January 2013.
INTERVENTIONS: Self-monitoring of blood pressure combined with an individualized self-titration algorithm. During the study period, the office visit blood pressure measurement target was 130/80 mm Hg and the home measurement target was 120/75 mm Hg. Control patients received usual care consisting of seeing their health care clinician for routine blood pressure measurement and adjustment of medication if necessary.
MAIN OUTCOMES AND MEASURES: The primary outcome was the difference in systolic blood pressure between intervention and control groups at the 12-month office visit.
RESULTS: Primary outcome data were available from 450 patients (81%). The mean baseline blood pressure was 143.1/80.5 mm Hg in the intervention group and 143.6/79.5 mm Hg in the control group. After 12 months, the mean blood pressure had decreased to 128.2/73.8 mm Hg in the intervention group and to 137.8/76.3 mm Hg in the control group, a difference of 9.2 mm Hg (95% CI, 5.7-12.7) in systolic and 3.4 mm Hg (95% CI, 1.8-5.0) in diastolic blood pressure following correction for baseline blood pressure. Multiple imputation for missing values gave similar results: the mean baseline was 143.5/80.2 mm Hg in the intervention group vs 144.2/79.9 mm Hg in the control group, and at 12 months, the mean was 128.6/73.6 mm Hg in the intervention group vs 138.2/76.4 mm Hg in the control group, with a difference of 8.8 mm Hg (95% CI, 4.9-12.7) for systolic and 3.1 mm Hg (95% CI, 0.7-5.5) for diastolic blood pressure between groups. These results were comparable in all subgroups, without excessive adverse events.
CONCLUSIONS AND RELEVANCE: Among patients with hypertension at high risk of cardiovascular disease, self-monitoring with self-titration of antihypertensive medication compared with usual care resulted in lower systolic blood pressure at 12 months
Thermochemistry of Alane Complexes for Hydrogen Storage: A Theoretical and Experimental Comparison
Knowledge of the relative stabilities of alane (AlH3) complexes with electron
donors is essential for identifying hydrogen storage materials for vehicular
applications that can be regenerated by off-board methods; however, almost no
thermodynamic data are available to make this assessment. To fill this gap, we
employed the G4(MP2) method to determine heats of formation, entropies, and
Gibbs free energies of formation for thirty-eight alane complexes with NH3-nRn
(R = Me, Et; n = 0-3), pyridine, pyrazine, triethylenediamine (TEDA),
quinuclidine, OH2-nRn (R = Me, Et; n = 0-2), dioxane, and tetrahydrofuran
(THF). Monomer, bis, and selected dimer complex geometries were considered.
Using these data, we computed the thermodynamics of the key formation and
dehydrogenation reactions that would occur during hydrogen delivery and alane
regeneration, from which trends in complex stability were identified. These
predictions were tested by synthesizing six amine-alane complexes involving
trimethylamine, triethylamine, dimethylethylamine, TEDA, quinuclidine, and
hexamine, and obtaining upper limits of delta G for their formation from
metallic aluminum. Combining these computational and experimental results, we
establish a criterion for complex stability relevant to hydrogen storage that
can be used to assess potential ligands prior to attempting synthesis of the
alane complex. Based on this, we conclude that only a subset of the tertiary
amine complexes considered and none of the ether complexes can be successfully
formed by direct reaction with aluminum and regenerated in an alane-based
hydrogen storage system.Comment: Accepted by the Journal of Physical Chemistry
The impact of the lung allocation score on short-term transplantation outcomes: A multicenter study
ObjectiveThe lung allocation score restructured the distribution of scarce donor lungs for transplantation. The algorithm ranks waiting list patients according to medical urgency and expected benefit after transplantation. The purpose of this study was to evaluate the impact of the lung allocation score on short-term outcomes after lung transplantation.MethodsA multicenter retrospective cohort study was performed with data from 5 academic medical centers. Results of patients undergoing transplantation on the basis of the lung allocation score (May 4, 2005 to May 3, 2006) were compared with those of patients receiving transplants the preceding year before the lung allocation score was implemented (May 4, 2004, to May 3, 2005).ResultsThe study reports on 341 patients (170 before the lung allocation score and 171 after). Waiting time decreased from 680.9 ± 528.3 days to 445.6 ± 516.9 days (P < .001). Recipient diagnoses changed with an increase in idiopathic pulmonary fibrosis and a decrease in emphysema and cystic fibrosis (P = .002). Postoperatively, primary graft dysfunction increased from 14.1% (24/170) to 22.9% (39/171) (P = .04) and intensive care unit length of stay increased from 5.7 ± 6.7 days to 7.8 ± 9.6 days (P = .04). Hospital mortality and 1-year survival were the same between groups (5.3% vs 5.3% and 90% vs 89%, respectively; P > .6)ConclusionsThis multicenter retrospective review of short-term outcomes supports the fact that the lung allocation score is achieving its objectives. The lung allocation score reduced waiting time and altered the distribution of lung diseases for which transplantation was done on the basis of medical necessity. After transplantation, recipients have significantly higher rates of primary graft dysfunction and intensive care unit lengths of stay. However, hospital mortality and 1-year survival have not been adversely affected
- …