173 research outputs found

    A four-helix bundle stores copper for methane oxidation

    Get PDF
    Methane-oxidising bacteria (methanotrophs) require large quantities of copper for the membrane-bound (particulate) methane monooxygenase (pMMO). Certain methanotrophs are also able to switch to using the iron-containing soluble MMO (sMMO) to catalyse methane oxidation, with this switchover regulated by copper. MMOs are Nature’s primary biological mechanism for suppressing atmospheric levels of methane, a potent greenhouse gas. Furthermore, methanotrophs and MMOs have enormous potential in bioremediation and for biotransformations producing bulk and fine chemicals, and in bioenergy, particularly considering increased methane availability from renewable sources and hydraulic fracturing of shale rock. We have discovered and characterised a novel copper storage protein (Csp1) from the methanotroph Methylosinus trichosporium OB3b that is exported from the cytosol, and stores copper for pMMO. Csp1 is a tetramer of 4-helix bundles with each monomer binding up to 13 Cu(I) ions in a previously unseen manner via mainly Cys residues that point into the core of the bundle. Csp1 is the first example of a protein that stores a metal within an established protein-folding motif. This work provides a detailed insight into how methanotrophs accumulate copper for the oxidation of methane. Understanding this process is essential if the wide-ranging biotechnological applications of methanotrophs are to be realised. Cytosolic homologues of Csp1 are present in diverse bacteria thus challenging the dogma that such organisms do not use copper in this location

    Effect of phosphorus on the attenuation of lead and chromium

    Get PDF
    This study analyses the adsorption of Pb(II) and Cr(III) in soils. These metals are commonly found together in nature in urban wastes or industrial spillages, and the theoretical approach of the work was to evaluate the response of the soil to continuous Cr and Pb spillages to soil in terms of several physicochemical parameters. The influence of an anthropogenic input of phosphorus was evaluated. Continuous flow experiments were run in duplicates in acrylic columns (25 cm × 3.2 cm). The influent Cr(III) and Pb(II) solutions of 10 mg l−1 and 25 mg l−1 at pH 5 were pumped upward through the bottom of the columns to ensure saturation flow conditions. Also, successive experiments were run with the above concentrations of Cr(III) and Pb(II) and NaH2PO4, keeping metal to phosphorus ratio of 1:0, 1:0.1 and 1:1. Modelling parameters included Freundlich and Langmuir equations, together with the Two-site adsorption model using CXTFIT code. Results obtained allowed concluding that Pb(II) adsorption presents a certain degree of irreversibility and the continued spillages over soil increment the fraction which is not easily desorbed. Cr(III) desorption was almost complete, evidencing its high mobility in nature. The presence of an anthropogenic input of phosphorus leads to a marked increase of both Pb(II) and Cr(III) adsorption in soils. Z-potential measurements allow to discard the electrostatic attraction of Cr(III) and Pb(II) with the surface charged soil as the dominant process of metal sorption. Instead, CheaqsPro simulation allows to identify PbH2PO4 +, PbHPO4 (aq) and CrHPO4 + as the dominant species which regulate Cr(III) and Pb(II) transport in soils.Fundação para a Ciência e a Tecnologi

    Back to School Netball Style: An Emerging Highly Inclusive Game for Physical Education or Sport

    Get PDF
    This article describes netball, a fresh invasion game option to involve students of all ability levels. It is an inclusive and engaging team sport played globally that has the ability to keep students active and engaged in physical education

    Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil

    Full text link
    [EN] Stochastic upscaling of flow and reactive solute transport in a tropical soil is performed using real data collected in the laboratory. Upscaling of hydraulic conductivity, longitudinal hydrodynamic dispersion, and retardation factor were done using three different approaches of varying complexity. How uncertainty propagates after upscaling was also studied. The results show that upscaling must be taken into account if a good reproduction of the flow and transport behavior of a given soil is to be attained when modeled at larger than laboratory scales. The results also show that arrival time uncertainty was well reproduced after solute transport upscaling. This work represents a first demonstration of flow and reactive transport upscaling in a soil based on laboratory data. It also shows how simple upscaling methods can be incorporated into daily modeling practice using commercial flow and transport codes.The authors thank the financial support by the Brazilian National Council for Scientific and Technological Development (CNPq) (Project 401441/2014-8). The doctoral fellowship award to the first author by the Coordination of Improvement of Higher Level Personnel (CAPES) is acknowledged. The first author also thanks the international mobility grant awarded by CNPq, through the Sciences Without Borders program (Grant Number: 200597/2015-9). The international mobility grant awarded by Santander Mobility in cooperation with the University of Sao Paulo is also acknowledged. DHI-WASI is gratefully thanked for providing a FEFLOW license.Almeida De-Godoy, V.; Zuquette, L.; Gómez-Hernández, JJ. (2019). Stochastic upscaling of hydrodynamic dispersion and retardation factor in a physically and chemically heterogeneous tropical soil. Stochastic Environmental Research and Risk Assessment. 33(1):201-216. https://doi.org/10.1007/s00477-018-1624-zS201216331Ahuja LR, Naney JW, Green RE, Nielsen DR (1984) Macroporosity to characterize spatial variability of hydraulic conductivity and effects of land management. Soil Sci Soc Am J 48:699. https://doi.org/10.2136/sssaj1984.03615995004800040001xBellin A, Lawrence AE, Rubin Y (2004) Models of sub-grid variability in numerical simulations of solute transport in heterogeneous porous formations: three-dimensional flow and effect of pore-scale dispersion. Stoch Environ Res Risk Assess 18:31–38. https://doi.org/10.1007/s00477-003-0164-2Brent RP (1973) Algorithms for minimization without derivatives. Prentice Hall, Englewood CliffsBrusseau ML (1998) Non-ideal transport of reactive solutes in heterogeneous porous media: 3. model testing and data analysis using calibration versus prediction. J Hydrol 209:147–165. https://doi.org/10.1016/S0022-1694(98)00121-8Brusseau ML, Srivastava R (1999) Nonideal transport of reactive solutes in heterogeneous porous media: 4. Analysis of the cape cod natural-gradient field experiment. Water Resour Res 35:1113–1125. https://doi.org/10.1029/1998WR900019Brutsaert W (1967) Some methods of calculating unsaturated permeability. Trans ASAE 10:400–404Cadini F, De Sanctis J, Bertoli I, Zio E (2013) Upscaling of a dual-permeability Monte Carlo simulation model for contaminant transport in fractured networks by genetic algorithm parameter identification. Stoch Environ Res Risk Assess 27:505–516. https://doi.org/10.1007/s00477-012-0595-8Cambardella CA, Moorman TB, Parkin TB, Karlen DL, Novak JM, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central iowa soils. Soil Sci Soc Am J 58:1501. https://doi.org/10.2136/sssaj1994.03615995005800050033xCapilla JE, Rodrigo J, Gómez-Hernández JJ (1999) Simulation of non-Gaussian transmissivity fields honoring piezometric data and integrating soft and secondary information. Math Geol 31:907–927. https://doi.org/10.1023/A:1007580902175Cassiraga EF, Fernàndez-Garcia D, Gómez-Hernández JJ (2005) Performance assessment of solute transport upscaling methods in the context of nuclear waste disposal. Int J Rock Mech Min Sci 42:756–764. https://doi.org/10.1016/j.ijrmms.2005.03.013Corey AT (1977) Mechanics of heterogeneous fluids in porous media. Water Resources Publications, Fort Collins, CO, p 259Dagan G (1989) Flow and transport in porous formations. Springer, Berlin. https://doi.org/10.1007/978-3-642-75015-1Dagan G (2004) On application of stochastic modeling of groundwater flow and transport. Stoch Environ Res Risk Assess. https://doi.org/10.1007/s00477-004-0191-7de Azevedo AAB, Pressinotti MMN, Massoli M (1981) Sedimentological studies of the Botucatu and Pirambóia formations in the region of Santa Rita do Passa Quatro (In portuguese). Rev do Inst Geológico 2:31–38. https://doi.org/10.5935/0100-929X.19810003Deng H, Dai Z, Wolfsberg AV, Ye M, Stauffer PH, Lu Z, Kwicklis E (2013) Upscaling retardation factor in hierarchical porous media with multimodal reactive mineral facies. Chemosphere 91:248–257. https://doi.org/10.1016/j.chemosphere.2012.10.105Diersch H-JG (2014) Finite element modeling of flow, mass and heat transport in porous and fractured media. Springer, Berlin. https://doi.org/10.1007/978-3-642-38739-5Dippenaar MA (2014) Porosity reviewed: quantitative multi-disciplinary understanding, recent advances and applications in vadose zone hydrology. Geotech Geol Eng 32:1–19. https://doi.org/10.1007/s10706-013-9704-9Fagundes JRT, Zuquette LV (2011) Sorption behavior of the sandy residual unconsolidated materials from the sandstones of the Botucatu Formation, the main aquifer of Brazil. Environ Earth Sci 62:831–845. https://doi.org/10.1007/s12665-010-0570-yFenton GA, Griffiths DV (2008) Risk assessment in geotechnical engineering. Wiley, p 463Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Impact of upscaling on solute transport: Traveltimes, scale dependence of dispersivity, and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2005WR004727Fernàndez-Garcia D, Llerar-Meza G, Gómez-Hernández JJ (2009) Upscaling transport with mass transfer models: mean behavior and propagation of uncertainty. Water Resour Res. https://doi.org/10.1029/2009WR007764Feyen L, Gómez-Hernández JJ, Ribeiro PJ, Beven KJ, De Smedt F (2003a) A Bayesian approach to stochastic capture zone delineation incorporating tracer arrival times, conductivity measurements, and hydraulic head observations. Water Resour Res. https://doi.org/10.1029/2002WR001544Feyen L, Ribeiro PJ, Gómez-Hernández JJ, Beven KJ, De Smedt F (2003b) Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. J Hydrol 271:156–170. https://doi.org/10.1016/S0022-1694(02)00314-1Forsythe GE, Malcolm MA, Moler CB (1976) Computer methods for mathematical computations. Prentice-Hall, Englewood Cliffs, p 259Freeze R, Cherry J (1979) Groundwater. PrenticeHall Inc, Englewood cliffs, p 604Frippiat CC, Holeyman AE (2008) A comparative review of upscaling methods for solute transport in heterogeneous porous media. J Hydrol 362:150–176. https://doi.org/10.1016/j.jhydrol.2008.08.015Fu J, Gómez-Hernández JJ (2009) Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. J Hydrol 364:328–341. https://doi.org/10.1016/j.jhydrol.2008.11.014Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180. https://doi.org/10.1029/WR019i001p00161Gelhar LW, Welty C, Rehfeldt KR (1992) A critical review of data on field-scale dispersion in aquifers. Water Resour Res 28:1955–1974. https://doi.org/10.1029/92WR00607Giacheti HL, Rohm SA, Nogueira JB, Cintra JCA (1993) Geotechnical properties of the Cenozoic sediment (in protuguese). In: Albiero JH, Cintra JCA (eds) Soil from the interior of São Paulo. ABMS, Sao Paulo, pp 143–175Gómez-Hernandez JJ (1990) A stochastic approach to the simulation of block conductivity fields conditional upon data measured at a smaller scale. Stanford University, StanfordGómez-Hernández JJ, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variabiity of hydraulic conductivity, leackance, and recharge. Water Resour Res 25:405–419Gómez-Hernández JJ, Journel A (1993) Joint sequential simulation of multigaussian fields. In: Geostatistics Tróia’92. pp 85–94. https://doi.org/10.1007/978-94-011-1739-5_8Gómez-Hernández JJ, Wen X-H (1994) Probabilistic assessment of travel times in groundwater modeling. Stoch Hydrol Hydraul 8:19–55. https://doi.org/10.1007/BF01581389Gómez-Hernández JJ, Fu J, Fernandez-Garcia D (2006) Upscaling retardation factors in 2-D porous media. In: Bierkens MFP, Gehrels JC, Kovar K (eds) Calibration and reliability in groundwater modelling: from uncertainty to decision making: proceedings of the ModelCARE 2005 conference held in The Hague, The Netherlands, 6–9 June, 2005. IAHS Publication, pp 130–136Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45. https://doi.org/10.1016/S0016-7061(98)00078-0Jarvis NJ (2007) A review of non-equilibrium water fl ow and solute transport in soil macropores: principles, controlling factors and consequences for water quality. Eur J Soil Sci 58:523–546. https://doi.org/10.4141/cjss2011-050Jellali S, Diamantopoulos E, Kallali H, Bennaceur S, Anane M, Jedidi N (2010) Dynamic sorption of ammonium by sandy soil in fixed bed columns: evaluation of equilibrium and non-equilibrium transport processes. J Environ Manag 91:897–905. https://doi.org/10.1016/j.jenvman.2009.11.006Journel AG, Gomez-Hernandez JJ (1993) Stochastic imaging of the wilmington clastic sequence. SPE Form Eval 8:33–40. https://doi.org/10.2118/19857-PAJournel A, Deutsch C, Desbarats A (1986) Power averaging for block effective permeability. Proc SPE Calif Reg Meet. https://doi.org/10.2118/15128-MSKronberg BI, Fyfe WS, Leonardos OH, Santos AM (1979) The chemistry of some Brazilian soils: element mobility during intense weathering. Chem Geol 24:211–229. https://doi.org/10.1016/0009-2541(79)90124-4Lake LW (1988) The origins of anisotropy (includes associated papers 18394 and 18458). J Pet Technol 40:395–396. https://doi.org/10.2118/17652-PALawrence AE, Rubin Y (2007) Block-effective macrodispersion for numerical simulations of sorbing solute transport in heterogeneous porous formations. Adv Water Resour 30:1272–1285. https://doi.org/10.1016/j.advwatres.2006.11.005Lemke LD, Barrack WA II, Abriola LM, Goovaerts P (2004) Matching solute breakthrough with deterministic and stochastic aquifer models. Groundwater 42:920–934Li L, Zhou H, Gómez-Hernández JJ (2011a) A comparative study of three-dimensional hydraulic conductivity upscaling at the macro-dispersion experiment (MADE) site, Columbus Air Force Base, Mississippi (USA). J Hydrol 404:278–293. https://doi.org/10.1016/j.jhydrol.2011.05.001Li L, Zhou H, Gómez-Hernández JJ (2011b) Transport upscaling using multi-rate mass transfer in three-dimensional highly heterogeneous porous media. Adv Water Resour 34:478–489. https://doi.org/10.1016/j.advwatres.2011.01.001Logsdon Keller KE, Moorman TB (2002) Measured and predicted solute leaching from multiple undisturbed soil columns. Soil Sci Soc Am J 66:686–695. https://doi.org/10.2136/sssaj2002.6860Lourens A, van Geer FC (2016) Uncertainty propagation of arbitrary probability density functions applied to upscaling of transmissivities. Stoch Environ Res Risk Assess 30:237–249. https://doi.org/10.1007/s00477-015-1075-8Mahapatra IC, Singh KN, Pillai KG, Bapat SR (1985) Rice soils and their management. Indian J Agron 30:R1–R41Morakinyo JA, Mackay R (2006) Geostatistical modelling of ground conditions to support the assessment of site contamination. Stoch Environ Res Risk Assess 20:106–118. https://doi.org/10.1007/s00477-005-0015-4Moslehi M, de Barros FPJ, Ebrahimi F, Sahimi M (2016) Upscaling of solute transport in disordered porous media by wavelet transformations. Adv Water Resour 96:180–189. https://doi.org/10.1016/j.advwatres.2016.07.013Osinubi KJ, Nwaiwu CM (2005) Hydraulic conductivity of compacted lateritic soil. J Geotech Geoenviron Eng 131:1034–1041. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(1034)Remy N (2004) SGeMS: stanford geostatistical modeling software. Softw Man. https://doi.org/10.1007/978-1-4020-3610-1_89Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Resour 20:253–278. https://doi.org/10.1016/S0309-1708(96)00050-4Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian forces base borden aquifer. Water Resour Res 27:2619–2632. https://doi.org/10.1029/91WR01107Salamon P, Fernàndez-Garcia D, Gómez-Hernández JJ (2007) Modeling tracer transport at the MADE site: the importance of heterogeneity. Water Resour Res. https://doi.org/10.1029/2006WR005522Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22. https://doi.org/10.1016/S0022-1694(96)80031-XScheibe T, Yabusaki S (1998) Scaling of flow and transport behavior in heterogeneous groundwater systems. Adv Water Resour 22:223–238. https://doi.org/10.1016/S0309-1708(98)00014-1Selvadurai PA, Selvadurai APS (2014) On the effective permeability of a heterogeneous porous medium: the role of the geometric mean. Philos Mag 94:2318–2338. https://doi.org/10.1080/14786435.2014.913111Shackelford CD (1994) Critical concepts for column testing. J Geotech Eng 120:1804–1828. https://doi.org/10.1016/0148-9062(95)96996-OŠimůnek J, van Genuchten MT, Šejna M, Toride N, Leij FJ (1999) The STANMOD computer software for evaluating solute transport in porous media using analytical solutions of convection-dispersion equation. Riverside, CaliforniaTaskinen A, Sirviö H, Bruen M (2008) Modelling effects of spatial variability of saturated hydraulic conductivity on autocorrelated overland flow data: linear mixed model approach. Stoch Environ Res Risk Assess 22:67–82. https://doi.org/10.1007/s00477-006-0099-5Tuli A, Hopmans JW, Rolston DE, Moldrup P (2005) Comparison of air and water permeability between disturbed and undisturbed soils. Soil Sci Soc Am J 69:1361. https://doi.org/10.2136/sssaj2004.0332Tyukhova AR, Willmann M (2016) Conservative transport upscaling based on information of connectivity. Water Resour Res 52:6867–6880. https://doi.org/10.1002/2015WR018331van Genuchten MTh (1980) Determining transport parameters from solute displacement experiments. Research Report 118. U.S. Salinity Lab., Riverside, CAVanderborght J, Timmerman A, Feyen J (2000) Solute transport for steady-state and transient flow in soils with and without macropores. Soil Sci Soc Am J 64:1305–1317. https://doi.org/10.2136/sssaj2000.6441305xVanmarcke E (2010) Random fields: analysis and synthesis. World Scientific. MIT Press, Cambridge, MA, p 364Vishal V, Leung JY (2017) Statistical scale-up of 3D particle-tracking simulation for non-Fickian dispersive solute transport modeling. Environ Res Risk Assess, Stoch. https://doi.org/10.1007/s00477-017-1501-1Wen X-H, Gómez-Hernández JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183:ix–xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8Wen XH, Gómez-Hernández JJ (1998) Numerical modeling of macrodispersion in heterogeneous media: a comparison of multi-Gaussian and non-multi-Gaussian models. J Contam Hydrol 30:129–156. https://doi.org/10.1016/S0169-7722(97)00035-1Wen XH, Capilla JE, Deutsch CV, Gómez-Hernández JJ, Cullick AS (1999) A program to create permeability fields that honor single-phase flow rate and pressure data. Comput Geosci 25:217–230. https://doi.org/10.1016/S0098-3004(98)00126-5Wilding LP, Drees LR (1983) Spatial variability and pedology. In: Wilding LP, Smeck NE, Hall GF (eds) Pedogenesis and soil taxonomy: the soil orders. Elsevier, Amsterdam, pp 83–116Willmann M, Carrera J, Guadagnini A (2006) Block-upscaling of transport in heterogeneous aquifers. h2ogeo.upc.edu 1–7Xu Z, Meakin P (2013) Upscaling of solute transport in heterogeneous media with non-uniform flow and dispersion fields. Appl Math Model 37:8533–8542. https://doi.org/10.1016/j.apm.2013.03.070Zech A, Attinger S, Cvetkovic V, Dagan G, Dietrich P, Fiori A, Rubin Y, Teutsch G (2015) Is unique scaling of aquifer macrodispersivity supported by field data? Water Resour Res 51:7662–7679. https://doi.org/10.1002/2015WR017220Zhou H, Li L, Gómez-Hernández JJ (2010) Three-dimensional hydraulic conductivity upscaling in groundwater modeling. Comput Geosci 36:1224–1235. https://doi.org/10.1016/j.cageo.2010.03.008Zhou H, Li L, Hendricks Franssen H-J, Gómez-Hernández JJ (2012) Pattern recognition in a bimodal aquifer using the normal-score ensemble Kalman filter. Math Geosci 44:169–185. https://doi.org/10.1007/s11004-011-9372-

    Modelling solute transport in structured soils: performance evaluation of the ADR and TRM models

    Full text link
    The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO&minus;3, Cl&minus;, PO3&minus;4) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed (one-way ANOVA, p &lt; 0.001 indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale.<br /

    Internet of Things for Sustainable Mining

    Get PDF
    The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools to assess the environmental and social impacts of mining including the demands on dwindling freshwater resources. The cutting-edge technologies that could be leveraged to develop the state-of-the-art sustainable mining IoT paradigm are also discussed

    Rational design of polymer-based absorbents: application to the fermentation inhibitor furfural

    Get PDF
    BACKGROUND: Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. RESULTS: Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between −0.62 and −0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. CONCLUSION: We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams
    • …
    corecore