1,342 research outputs found

    Verschraenkung versus Stosszahlansatz: Disappearance of the Thermodynamic Arrow in a High-Correlation Environment

    Full text link
    The crucial role of ambient correlations in determining thermodynamic behavior is established. A class of entangled states of two macroscopic systems is constructed such that each component is in a state of thermal equilibrium at a given temperature, and when the two are allowed to interact heat can flow from the colder to the hotter system. A dilute gas model exhibiting this behavior is presented. This reversal of the thermodynamic arrow is a consequence of the entanglement between the two systems, a condition that is opposite to molecular chaos and shown to be unlikely in a low-entropy environment. By contrast, the second law is established by proving Clausius' inequality in a low-entropy environment. These general results strongly support the expectation, first expressed by Boltzmann and subsequently elaborated by others, that the second law is an emergent phenomenon that requires a low-entropy cosmological environment, one that can effectively function as an ideal information sink.Comment: 4 pages, REVTeX

    Development of Uniform Microstructures in Immiscible Alloys by Processing in a Low-Gravity Environment

    Get PDF
    Highly segregated macrostructures tend to develop during processing of hypermonotectic alloys because of the density difference existing between the two liquid phases. The approximately 4.6 seconds of low-gravity provided by Marshall Space Flight Center's 105 meter drop tube was utilized to minimize density-driven separation and promote uniform microstructures in hypermonotectic Ag-Ni and Ag-Mn alloys. For the Ag-Ni alloys a numerical model was developed to track heat flow and solidification of the bi-metal drop configuration. Results, potential applications, and future work are presented

    The Boltzmann Entropy for Dense Fluids Not in Local Equilibrium

    Full text link
    We investigate, via computer simulations, the time evolution of the (Boltzmann) entropy of a dense fluid not in local equilibrium. The macrovariables MM describing the system are the (empirical) particle density f=\{f(\un{x},\un{v})\} and the total energy EE. We find that S(ft,E)S(f_t,E) is monotone increasing in time even when its kinetic part is decreasing. We argue that for isolated Hamiltonian systems monotonicity of S(Mt)=S(MXt)S(M_t) = S(M_{X_t}) should hold generally for ``typical'' (the overwhelming majority of) initial microstates (phase-points) X0X_0 belonging to the initial macrostate M0M_0, satisfying MX0=M0M_{X_0} = M_0. This is a direct consequence of Liouville's theorem when MtM_t evolves autonomously.Comment: 8 pages, 5 figures. Submitted to PR

    Quasi-chemical Theories of Associated Liquids

    Full text link
    It is shown how traditional development of theories of fluids based upon the concept of physical clustering can be adapted to an alternative local clustering definition. The alternative definition can preserve a detailed valence description of the interactions between a solution species and its near-neighbors, i.e., cooperativity and saturation of coordination for strong association. These clusters remain finite even for condensed phases. The simplest theory to which these developments lead is analogous to quasi-chemical theories of cooperative phenomena. The present quasi-chemical theories require additional consideration of packing issues because they don't impose lattice discretizations on the continuous problem. These quasi-chemical theories do not require pair decomposable interaction potential energy models. Since calculations may be required only for moderately sized clusters, we suggest that these quasi-chemical theories could be implemented with computational tools of current electronic structure theory. This can avoid an intermediate step of approximate force field generation.Comment: 20 pages, no figures replacement: minor typographical corrections, four references added, in press Molec. Physics 199

    The EPR experiment in the energy-based stochastic reduction framework

    Full text link
    We consider the EPR experiment in the energy-based stochastic reduction framework. A gedanken set up is constructed to model the interaction of the particles with the measurement devices. The evolution of particles' density matrix is analytically derived. We compute the dependence of the disentanglement rate on the parameters of the model, and study the dependence of the outcome probabilities on the noise trajectories. Finally, we argue that these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure

    The Hartree limit of Born's ensemble for the ground state of a bosonic atom or ion

    Full text link
    The non-relativistic bosonic ground state is studied for quantum N-body systems with Coulomb interactions, modeling atoms or ions made of N "bosonic point electrons" bound to an atomic point nucleus of Z "electron" charges, treated in Born--Oppenheimer approximation. It is shown that the (negative) ground state energy E(Z,N) yields the monotonically growing function (E(l N,N) over N cubed). By adapting an argument of Hogreve, it is shown that its limit as N to infinity for l > l* is governed by Hartree theory, with the rescaled bosonic ground state wave function factoring into an infinite product of identical one-body wave functions determined by the Hartree equation. The proof resembles the construction of the thermodynamic mean-field limit of the classical ensembles with thermodynamically unstable interactions, except that here the ensemble is Born's, with the absolute square of the ground state wave function as ensemble probability density function, with the Fisher information functional in the variational principle for Born's ensemble playing the role of the negative of the Gibbs entropy functional in the free-energy variational principle for the classical petit-canonical configurational ensemble.Comment: Corrected version. Accepted for publication in Journal of Mathematical Physic

    Synaptically activated burst-generating conductances may underlie a group-pacemaker mechanism for respiratory rhythm generation in mammals

    Get PDF
    Breathing, chewing, and walking are critical life-sustaining behaviors in mammals that consist essentially of simple rhythmic movements. Breathing movements in particular involve the diaphragm, thorax, and airways but emanate from a network in the lower brain stem. This network can be studied in reduced preparations in vitro and using simplified mathematical models that make testable predictions. An iterative approach that employs both in vitro and in silico models argues against canonical mechanisms for respiratory rhythm in neonatal rodents that involve reciprocal inhibition and pacemaker properties. We present an alternative model in which emergent network properties play a rhythmogenic role. Specifically, we show evidence that synaptically activated burst-generating conductances-which are only available in the context of network activity-engender robust periodic bursts in respiratory neurons. Because the cellular burst-generating mechanism is linked to network synaptic drive we dub this type of system a group pacemaker. © 2010 Elsevier B.V

    A measure of individual role in collective dynamics

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure. We show that dynamical influence measures explicitly how strongly a node's dynamical state affects collective behavior. For critical spreading, dynamical influence targets nodes according to their spreading capabilities. For diffusive processes it quantifies how efficiently real systems may be controlled by manipulating a single node.Comment: accepted for publication in Scientific Report

    The dynamics of thin vibrated granular layers

    Full text link
    We describe a series of experiments and computer simulations on vibrated granular media in a geometry chosen to eliminate gravitationally induced settling. The system consists of a collection of identical spherical particles on a horizontal plate vibrating vertically, with or without a confining lid. Previously reported results are reviewed, including the observation of homogeneous, disordered liquid-like states, an instability to a `collapse' of motionless spheres on a perfect hexagonal lattice, and a fluctuating, hexagonally ordered state. In the presence of a confining lid we see a variety of solid phases at high densities and relatively high vibration amplitudes, several of which are reported for the first time in this article. The phase behavior of the system is closely related to that observed in confined hard-sphere colloidal suspensions in equilibrium, but with modifications due to the effects of the forcing and dissipation. We also review measurements of velocity distributions, which range from Maxwellian to strongly non-Maxwellian depending on the experimental parameter values. We describe measurements of spatial velocity correlations that show a clear dependence on the mechanism of energy injection. We also report new measurements of the velocity autocorrelation function in the granular layer and show that increased inelasticity leads to enhanced particle self-diffusion.Comment: 11 pages, 7 figure

    Bose-Einstein Condensation of Helium and Hydrogen inside Bundles of Carbon Nanotubes

    Full text link
    Helium atoms or hydrogen molecules are believed to be strongly bound within the interstitial channels (between three carbon nanotubes) within a bundle of many nanotubes. The effects on adsorption of a nonuniform distribution of tubes are evaluated. The energy of a single particle state is the sum of a discrete transverse energy Et (that depends on the radii of neighboring tubes) and a quasicontinuous energy Ez of relatively free motion parallel to the axis of the tubes. At low temperature, the particles occupy the lowest energy states, the focus of this study. The transverse energy attains a global minimum value (Et=Emin) for radii near Rmin=9.95 Ang. for H2 and 8.48 Ang.for He-4. The density of states N(E) near the lowest energy is found to vary linearly above this threshold value, i.e. N(E) is proportional to (E-Emin). As a result, there occurs a Bose-Einstein condensation of the molecules into the channel with the lowest transverse energy. The transition is characterized approximately as that of a four dimensional gas, neglecting the interactions between the adsorbed particles. The phenomenon is observable, in principle, from a singular heat capacity. The existence of this transition depends on the sample having a relatively broad distribution of radii values that include some near Rmin.Comment: 21 pages, 9 figure
    • …
    corecore