14 research outputs found
Developing a translational ecology workforce
We define a translational ecologist as a professional ecologist with diverse disciplinary expertise and skill sets, as well as a suitable personal disposition, who engages across social, professional, and disciplinary boundaries to partner with decision makers to achieve practical environmental solutions. Becoming a translational ecologist requires specific attention to obtaining critical non-scientific disciplinary breadth and skills that are not typically gained through graduate-level education. Here, we outline a need for individuals with broad training in interdisciplinary skills, use our personal experiences as a basis for assessing the types of interdisciplinary skills that would benefit potential translational ecologists, and present steps that interested ecologists may take toward becoming translational. Skills relevant to translational ecologists may be garnered through personal experiences, informal training, short courses, fellowships, and graduate programs, among others. We argue that a translational ecology workforce is needed to bridge the gap between science and natural resource decisions. Furthermore, we argue that this task is a cooperative responsibility of individuals interested in pursuing these careers, educational institutions interested in training scientists for professional roles outside of academia, and employers seeking to hire skilled workers who can foster stakeholder-engaged decision making
Foundations of Translational Ecology
Ecologists who specialize in translational ecology (TE) seek to link ecological knowledge to decision making by integrating ecological science with the full complement of social dimensions that underlie today\u27s complex environmental issues. TE is motivated by a search for outcomes that directly serve the needs of natural resource managers and decision makers. This objective distinguishes it from both basic and applied ecological research and, as a practice, it deliberately extends research beyond theory or opportunistic applications. TE is uniquely positioned to address complex issues through interdisciplinary team approaches and integrated scientist–practitioner partnerships. The creativity and context-specific knowledge of resource managers, practitioners, and decision makers inform and enrich the scientific process and help shape use-driven, actionable science. Moreover, addressing research questions that arise from on-the-ground management issues – as opposed to the top-down or expert-oriented perspectives of traditional science – can foster the high levels of trust and commitment that are critical for long-term, sustained engagement between partners
Thyroid Hormone Regulation of Retinoic Acid Synthesis in Brown Adipose Tissue
In mice, alterations to vitamin A status through gene knockout or treatment with pharmacological doses of retinoic acid (RA), the active form of vitamin A, affect overall energy metabolism and body weight. Generally, increases in RA lead to increased metabolism and weight loss, and reductions in RA lead to weight gain. One specific effect is that within brown adipose tissue impaired RA synthesis impairs the tissue\u27s ability to generate heat and thus an organism\u27s ability to maintain normal body weight and temperature. We therefore hypothesize that in a cell model of brown adipose tissue, thyroid hormone (T3), a potent activator of brown adipose function, will also increase RA synthesis through induction of retinol and retinal dehydrogenases. Together, these enzymes synthesize RA from the precursor retinol. Overall, our work contributes to a better understanding of factors that impact both obesity and metabolic disease
Recommended from our members
Cultivar and Nitrogen Effects on Yield and Grain Protein in Irrigated Durum Wheat, 2012
The grain yield and nitrogen use efficiency of durum wheat vary in response to genotypic and nitrogen fertilization were studied in field during two growth seasons. The aim of this study was to evaluate the effects the N fertilizer rate on grain yield and quality under irrigated desert conditions in relation to N utilization. Six durum wheat cultivars (Duraking, Havasu, Kronos, Ocotillo, Orita, Topper) were grown in field trails under irrigated regimes at five N levels (0, 65, 110, 160, 240 lbs/acre) in 2010-2011 and six N levels (0, 65, 110, 160, 240, 360 kg ha-1) in 2011-2012 at Maricopa Ag Center. The results showed the varieties and N levels both significantly affected grain yield, grain protein concentration, and nitrogen use efficiency. A simple and rapid method to measure crop N status using SPAD meters was also developed. The results showed that using the differences in SPAD readings between the first and second fully expanded leaves is a useful way to improve effectiveness of SPAD meters in durum wheat N management
Understanding and managing the interactions of impacts from nature-based recreation and climate change
Disturbance to ecosystems in parks and protected areas from nature-based tourism and recreation is increasing in scale and severity, as are the impacts of climate change—but there is limited research examining the degree to which these anthropogenic disturbances interact. In this perspective paper, we draw on the available literature to expose complex recreation and climate interactions that may alter ecosystems of high conservation value such that important species and processes no longer persist. Our emphasis is on ecosystems in high demand for tourism and recreation that also are increasingly experiencing stress from climate change. We discuss the importance of developing predictive models of direct and indirect effects, including threshold and legacy effects at different levels of biological organization. We present a conceptual model of these interactions to initiate a dialog among researchers and managers so that new research approaches and managerial frameworks are advanced to address this emerging issue