842 research outputs found
General method for extracting the quantum efficiency of dispersive qubit readout in circuit QED
We present and demonstrate a general three-step method for extracting the
quantum efficiency of dispersive qubit readout in circuit QED. We use active
depletion of post-measurement photons and optimal integration weight functions
on two quadratures to maximize the signal-to-noise ratio of the
non-steady-state homodyne measurement. We derive analytically and demonstrate
experimentally that the method robustly extracts the quantum efficiency for
arbitrary readout conditions in the linear regime. We use the proven method to
optimally bias a Josephson traveling-wave parametric amplifier and to quantify
different noise contributions in the readout amplification chain.Comment: 10 pages, 6 figure
Comparative genomic analysis of novel Acinetobacter symbionts : A combined systems biology and genomics approach
Acknowledgements This work was supported by University of Delhi, Department of Science and Technology- Promotion of University Research and Scientific Excellence (DST-PURSE). V.G., S.H. and U.S. gratefully acknowledge the Council for Scientific and Industrial Research (CSIR), University Grant Commission (UGC) and Department of Biotechnology (DBT) for providing research fellowship.Peer reviewedPublisher PD
Quantification of Ion Migration in CH3NH3PbI3 Perovskite Solar Cells by Transient Capacitance Measurements
Solar cells based on organic-inorganic metal halide perovskites show
efficiencies close to highly-optimized silicon solar cells. However, ion
migration in the perovskite films leads to device degradation and impedes large
scale commercial applications. We use transient ion-drift measurements to
quantify activation energy, diffusion coefficient, and concentration of mobile
ions in methylammonium lead triiodide (MAPbI3) perovskite solar cells, and find
that their properties change close to the tetragonal-to-orthorhombic phase
transition temperature. We identify three migrating ion species which we
attribute to the migration of iodide (I-) and methylammonium (MA+). We find
that the concentration of mobile MA+ ions is one order of magnitude higher than
the one of mobile I- ions, and that the diffusion coefficient of mobile MA+
ions is three orders of magnitude lower than the one for mobile I- ions. We
furthermore observe that the activation energy of mobile I- ions (0.29 eV) is
highly reproducible for different devices, while the activation energy of
mobile MA+ depends strongly on device fabrication. This quantification of
mobile ions in MAPbI3 will lead to a better understanding of ion migration and
its role in operation and degradation of perovskite solar cells
children: differentiation using diffusion-weighted magnetic resonance imaging
Purpose
To evaluate differences in magnetic resonance imaging (MRI) appearance between infantile hemangiomas and rhabdomyosarcomas of the orbit in pediatric patients using diffusion-weighted imaging.
Methods
A multicenter retrospective review of MRIs of pediatric patients with infantile hemangiomas and rhabdomyosarcomas of the orbit was performed. MRI examinations from a total of 21 patients with infantile hemangiomas and 12 patients with rhabdomyosarcomas of the orbit were independently reviewed by two subspecialty board-certified neuroradiologists masked to the diagnosis. A freehand region of interest was placed in the mass to obtain the mean apparent diffusion coefficient (ADC) value of the mass as well as within the medulla to obtain a ratio of the ADC mass to the medulla. A t test was used to compare mean ADC and ADC ratios between the two groups. Receiver operating characteristic analysis was performed to determine ADC value and ADC ratio thresholds for differentiation of infantile hemangioma and rhabdomyosarcoma.
Results
There was a statistically significant difference in the mean ADC value of infantile hemangiomas compared to rhabdomyosarcomas (1527 × 10−6 mm2/s vs 782 × 10−6 mm2/s; P = 0.0001) and the ADC ratio of the lesion to the medulla (1.77 vs 0.92; P = 0.0001). An ADC threshold of <1159 × 10−6 mm2/sec and an ADC ratio of <1.38 differentiated rhabdomyosarcoma from infantile hemangioma (sensitivity 100% and 100%; specificity 100% and 100%) with area under the curve of 1.0 and 1.0, respectively.
Conclusions
In conjunction with conventional MRI sequences, ADC values obtained from diffusion-weighted MRI are useful to differentiate orbital infantile hemangiomas from rhabdomyosarcomas in pediatric patients
Logical-qubit operations in an error-detecting surface code
We realize a suite of logical operations on a distance-two logical qubit
stabilized using repeated error detection cycles. Logical operations include
initialization into arbitrary states, measurement in the cardinal bases of the
Bloch sphere, and a universal set of single-qubit gates. For each type of
operation, we observe higher performance for fault-tolerant variants over
non-fault-tolerant variants, and quantify the difference through detailed
characterization. In particular, we demonstrate process tomography of logical
gates, using the notion of a logical Pauli transfer matrix. This integration of
high-fidelity logical operations with a scalable scheme for repeated
stabilization is a milestone on the road to quantum error correction with
higher-distance superconducting surface codes.Comment: 16 pages, 9 figures, 2 table
Graphene-based ultrathin flat lenses
Flat lenses when compared to curved surface lenses have the advantages of being aberration free, and they offer a compact design necessary for a myriad of electro-optical applications. In this paper we present flat and ultrathin lenses based on graphene, the worlds thinnest known material. Monolayers and multilayers of graphene were fabricated into Fresnel zones to produce Fresnel zone plates, which utilize the reflection and transmission properties of graphene for their operation. The working of the lenses and their performance in the visible and terahertz regimes were analyzed computationally. Experimental measurements were also performed to characterize the lens in the visible regime, and a good agreement was obtained with the simulations. This work demonstrates the principle of atom-thick graphene-based lenses, with perspectives for ultracompact integration.</p
Role of sex hormones in modulating myocardial perfusion and coronary flow reserve
BACKGROUND
A growing body of evidence highlights sex differences in the diagnostic accuracy of cardiovascular imaging modalities. Nonetheless, the role of sex hormones in modulating myocardial perfusion and coronary flow reserve (CFR) is currently unclear. The aim of our study was to assess the impact of female and male sex hormones on myocardial perfusion and CFR.
METHODS
Rest and stress myocardial perfusion imaging (MPI) was conducted by small animal positron emission tomography (PET) with [F]flurpiridaz in a total of 56 mice (7-8 months old) including gonadectomized (Gx) and sham-operated males and females, respectively. Myocardial [F]flurpiridaz uptake (% injected dose per mL, % ID/mL) was used as a surrogate for myocardial perfusion at rest and following intravenous regadenoson injection, as previously reported. Apparent coronary flow reserve (CFR) was calculated as the ratio of stress and rest myocardial perfusion. Left ventricular (LV) morphology and function were assessed by cardiac magnetic resonance (CMR) imaging.
RESULTS
Orchiectomy resulted in a significant decrease of resting myocardial perfusion (Gx vs. sham, 19.4 ± 1.0 vs. 22.2 ± 0.7 % ID/mL, p = 0.034), while myocardial perfusion at stress remained unchanged (Gx vs. sham, 27.5 ± 1.2 vs. 27.3 ± 1.2 % ID/mL, p = 0.896). Accordingly, CFR was substantially higher in orchiectomized males (Gx vs. sham, 1.43 ± 0.04 vs. 1.23 ± 0.05, p = 0.004), and low serum testosterone levels were linked to a blunted resting myocardial perfusion (r = 0.438, p = 0.020) as well as an enhanced CFR (r = -0.500, p = 0.007). In contrast, oophorectomy did not affect myocardial perfusion in females. Of note, orchiectomized males showed a reduced LV mass, stroke volume, and left ventricular ejection fraction (LVEF) on CMR, while no such effects were observed in oophorectomized females.
CONCLUSION
Our experimental data in mice indicate that sex differences in myocardial perfusion are primarily driven by testosterone. Given the diagnostic importance of PET-MPI in clinical routine, further studies are warranted to determine whether testosterone levels affect the interpretation of myocardial perfusion findings in patients
The interaction of strigolactones with abscisic acid during the drought response in rice
Published online: 10 March 2018; Open Access ArticleBoth strigolactones (SLs) and abscisic acid (ABA) biosynthetically originate from carotenoids. Considering their common origin, the interaction of these two hormones at the biosynthetic and/or regulatory level may be anticipated. Here we show that, in rice, drought simultaneously induces SL production in the root, and ABA production and the expression of SL biosynthetic genes in the shoot. Under control conditions, the ABA concentration was higher in shoots of the SL biosynthetic rice mutants dwarf10 (d10) and d17 than in wild-type plants, while a similar trend was observed for the SL perception mutant d3. These differences were enhanced under drought. However, drought did not result in an increase in leaf ABA content in the rice mutant line d27, carrying a mutation in the gene encoding the first committed enzyme in SL biosynthesis, to the same extent as in the other SL mutants and the wild type. Accordingly, d10, d17, and d3 lines were more drought tolerant than wild-type plants, whereas d27 displayed decreased tolerance. Finally, overexpression of OsD27 in rice resulted in increased levels of ABA when compared with wild-type plants. We conclude that the SL and ABA pathways are connected with each other through D27, which plays a crucial role in determining ABA and SL content in rice
- …