5,984 research outputs found

    Approximate black hole binary spacetime via asymptotic matching

    Get PDF
    We construct a fully analytic, general relativistic, nonspinning black hole binary spacetime that approximately solves the vacuum Einstein equations everywhere in space and time for black holes sufficiently well separated. The metric is constructed by asymptotically matching perturbed Schwarzschild metrics near each black hole to a two-body post-Newtonian metric far from them, and a two-body post-Minkowskian metric farther still. Asymptotic matching is done without linearizing about a particular time slice, and thus it is valid dynamically and for all times, provided the binary is sufficiently well separated. This approximate global metric can be used for long dynamical evolutions of relativistic magnetohydrodynamical, circumbinary disks around inspiraling supermassive black holes to study a variety of phenomena.Comment: 17 pages, 8 figures, 1 table. Appendix added to match published versio

    Study of Conformally Flat Initial Data for Highly Spinning Black Holes and their Early Evolutions

    Full text link
    We study conformally-flat initial data for an arbitrary number of spinning black holes with exact analytic solutions to the momentum constraints constructed from a linear combination of the classical Bowen-York and conformal Kerr extrinsic curvatures. The solution leading to the largest intrinsic spin, relative to the ADM mass of the spacetime epsilon_S=S/M^2_{ADM}, is a superposition with relative weights of Lambda=0.783 for conformal Kerr and (1-Lambda)=0.217 for Bowen-York. In addition, we measure the spin relative to the initial horizon mass M_{H_0}, and find that the quantity chi=S/M_{H_0}^2 reaches a maximum of \chi^{max}=0.9856 for Lambda=0.753. After equilibration, the final black-hole spin should lie in the interval 0.9324<chi_{final}<0.9856. We perform full numerical evolutions to compute the energy radiated and the final horizon mass and spin. We find that the black hole settles to a final spin of chi_{final}^{max}=0.935 when Lambda=0.783. We also study the evolution of the apparent horizon structure of this "maximal" black hole in detail.Comment: 9 pages, 8 figure

    Hybrid Black-Hole Binary Initial Data

    Get PDF
    "Traditional black-hole binary puncture initial data is conformally flat. This unphysical assumption is coupled with a lack of radiation signature from the binary's past life. As a result, waveforms extracted from evolutions of this data display an abrupt jump. In Kelly et al. [Class. Quantum Grav. 27:114005 (2010)], a new binary black-hole initial data with radiation contents derived in the post-Newtonian (PN) calculations was adapted to puncture evolutions in numerical relativity. This data satisfies the constraint equations to the 2.5PN order, and contains a transverse-traceless "wavy" metric contribution, violating the standard assumption of conformal flatness. Although the evolution contained less spurious radiation, there were undesired features; the unphysical horizon mass loss and the large initial orbital eccentricity. Introducing a hybrid approach to the initial data evaluation, we significantly reduce these undesired features.

    GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit

    Get PDF
    We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the toolkit builds upon previous releases and implements the evolution of relativistic magnetized fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both constrained transport and hyperbolic divergence cleaning schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfvén waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code's performance in curved spacetimes with spherical accretion onto a black hole on a fixed background spacetime and in fully dynamical spacetimes by evolutions of a magnetized polytropic neutron star and of the collapse of a magnetized stellar core. Our results agree well with exact solutions where these are available and we demonstrate convergence. All code and input files used to generate the results are available on http://einsteintoolkit.org. This makes our work fully reproducible and provides new users with an introduction to applications of the code

    Circumbinary MHD Accretion into Inspiraling Binary Black Holes

    Full text link
    As 2 black holes bound to each other in a close binary approach merger their inspiral time becomes shorter than the characteristic inflow time of surrounding orbiting matter. Using an innovative technique in which we represent the changing spacetime in the region occupied by the orbiting matter with a 2.5PN approximation and the binary orbital evolution with 3.5PN, we have simulated the MHD evolution of a circumbinary disk surrounding an equal-mass non-spinning binary. Prior to the beginning of the inspiral, the structure of the circumbinary disk is predicted well by extrapolation from Newtonian results. The binary opens a low-density gap whose radius is roughly two binary separations, and matter piles up at the outer edge of this gap as inflow is retarded by torques exerted by the binary; nonetheless, the accretion rate is diminished relative to its value at larger radius by only about a factor of 2. During inspiral, the inner edge of the disk at first moves inward in coordination with the shrinking binary, but as the orbital evolution accelerates, the rate at which the inner edge moves toward smaller radii falls behind the rate of binary compression. In this stage, the rate of angular momentum transfer from the binary to the disk slows substantially, but the net accretion rate decreases by only 10-20%. When the binary separation is tens of gravitational radii, the rest-mass efficiency of disk radiation is a few percent, suggesting that supermassive binary black holes in galactic nuclei could be very luminous at this stage of their evolution. If the luminosity were optically thin, it would be modulated at a frequency that is a beat between the orbital frequency of the disk's surface density maximum and the binary orbital frequency. However, a disk with sufficient surface density to be luminous should also be optically thick; as a result, the periodic modulation may be suppressed.Comment: 54 pages, color figures, submitted to the Astrophysical Journal, a high resolution version and movies can be found at http://ccrg.rit.edu/~scn/cmhdaiibh

    Deploying a Top-100 Supercomputer for Large Parallel Workloads: the Niagara Supercomputer

    Full text link
    Niagara is currently the fastest supercomputer accessible to academics in Canada. It was deployed at the beginning of 2018 and has been serving the research community ever since. This homogeneous 60,000-core cluster, owned by the University of Toronto and operated by SciNet, was intended to enable large parallel jobs and has a measured performance of 3.02 petaflops, debuting at #53 in the June 2018 TOP500 list. It was designed to optimize throughput of a range of scientific codes running at scale, energy efficiency, and network and storage performance and capacity. It replaced two systems that SciNet operated for over 8 years, the Tightly Coupled System (TCS) and the General Purpose Cluster (GPC). In this paper we describe the transition process from these two systems, the procurement and deployment processes, as well as the unique features that make Niagara a one-of-a-kind machine in Canada.Comment: PEARC'19: "Practice and Experience in Advanced Research Computing", July 28-August 1, 2019, Chicago, IL, US

    Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration

    Get PDF
    The Numerical-Relativity-Analytical-Relativity (NRAR) collaboration is a joint effort between members of the numerical relativity, analytical relativity and gravitational-wave data analysis communities. The goal of the NRAR collaboration is to produce numerical-relativity simulations of compact binaries and use them to develop accurate analytical templates for the LIGO/Virgo Collaboration to use in detecting gravitational-wave signals and extracting astrophysical information from them. We describe the results of the first stage of the NRAR project, which focused on producing an initial set of numerical waveforms from binary black holes with moderate mass ratios and spins, as well as one non-spinning binary configuration which has a mass ratio of 10. All of the numerical waveforms are analysed in a uniform and consistent manner, with numerical errors evaluated using an analysis code created by members of the NRAR collaboration. We compare previously-calibrated, non-precessing analytical waveforms, notably the effective-one-body (EOB) and phenomenological template families, to the newly-produced numerical waveforms. We find that when the binary's total mass is ~100-200 solar masses, current EOB and phenomenological models of spinning, non-precessing binary waveforms have overlaps above 99% (for advanced LIGO) with all of the non-precessing-binary numerical waveforms with mass ratios <= 4, when maximizing over binary parameters. This implies that the loss of event rate due to modelling error is below 3%. Moreover, the non-spinning EOB waveforms previously calibrated to five non-spinning waveforms with mass ratio smaller than 6 have overlaps above 99.7% with the numerical waveform with a mass ratio of 10, without even maximizing on the binary parameters.Comment: 51 pages, 10 figures; published versio
    • …
    corecore