1,183 research outputs found

    Contribution of polymorphic variation of inositol hexakisphosphate kinase 3 (IP6K3) gene promoter to the susceptibility to late onset Alzheimer's disease

    Get PDF
    Maintenance of electric potential and synaptic transmission are energetically demanding tasks that neuronal metabolism must continually satisfy. Inability to fulfil these energy requirements leads to the development of neurodegenerative disorders, including Alzheimer's disease. A prominent feature of Alzheimer's disease is in fact neuronal glucose hypometabolism. Thus understanding the fine control of energetic metabolism might help to understand neurodegenerative disorders. Recent research has indicated that a novel class of signalling molecules, the inositol pyrophosphates, act as energy sensors. They are able to alter the balance between mitochondrial oxidative phosphorylation and glycolytic flux, ultimately affecting the cellular level of ATP. The neuronal inositol pyrophosphate synthesis relies on the activity of the neuron enriched inositol hexakisphosphate kinase 3 (IP6K3) enzyme. To verify an involvement of inositol pyrophosphate signalling in neurodegenerative disorders, we performed tagging single nucleotide polymorphism (SNP) analysis of the IP6K3 gene in patients with familial and sporadic late onset Alzheimer's disease (LOAD). Two SNPs in the 5'-flanking promoter region of the IP6K3 gene were found to be associated with sporadic LOAD. Characterizing the functionality of the two polymorphisms by luciferase assay revealed that one of them (rs28607030) affects IP6K3 promoter activity, with the G allele showing an increased activity. As the same allele has a beneficial effect on disease risk, this may be related to upregulation of IP6K3 expression, with a consequent increase in inositol pyrophosphate synthesis. In conclusion, we provide the first evidence for a contribution of genetic variability in the IP6K3 gene to LOAD pathogenesis

    IP6K3 and IPMK variations in LOAD and longevity: evidence for a multifaceted signaling network at the crossroad between neurodegeneration and survival

    Get PDF
    Several studies reported that genetic variants predisposing to neurodegeneration were at higher frequencies in centenarians than in younger controls, suggesting they might favor also longevity. IP6K3 and IPMK regulate many crucial biological functions by mediating synthesis of inositol poly- and pyrophosphates and by acting non-enzymatically via protein–protein interactions. Our previous studies suggested they affect Late Onset Alzheimer Disease (LOAD) and longevity, respectively. Here, in the same sample groups, we investigated whether variants of IP6K3 also affect longevity, and variants of IPMK also influence LOAD susceptibility. We found that: i) a SNP of IP6K3 previously associated with increased risk of LOAD increased the chance to become long-lived, ii) SNPs of IPMK, previously associated with decreased longevity, were protective factors for LOAD, as previously observed for UCP4. SNP-SNP interaction analysis, including our previous data, highlighted phenotype-specific interactions between sets of alleles. Moreover, linkage disequilibrium and eQTL data associated to analyzed variants suggested mitochondria as crossroad of interconnected pathways crucial for susceptibility to neurodegeneration and/or longevity. Overall, data support the view that in these traits interactions may be more important than single polymorphisms. This phenomenon may contribute to the non-additive heritability of neurodegeneration and longevity and be part of the missing heritability of these traits

    A Genome-Wide Screening and SNPs-to-Genes Approach to Identify Novel Genetic Risk Factors Associated with Frontotemporal Dementia

    Get PDF
    Frontotemporal dementia (FTD) is the second most prevalent form of early onset dementia after Alzheimer’s disease (AD). We performed a case-control association study in an Italian FTD cohort (n = 530) followed by the novel SNPs-to-genes approach and functional annotation analysis. We identified two novel potential loci for FTD. Suggestive SNPs reached p-values ~10-7 and OR > 2.5 (2p16.3) and 1.5 (17q25.3). Suggestive alleles at 17q25.3 identified a disease-associated haplotype causing decreased expression of -cis genes such as RFNG and AATK involved in neuronal genesis and differentiation, and axon outgrowth, respectively. We replicated this locus through the SNPs-to-genes approach. Our functional annotation analysis indicated significant enrichment for functions of the brain (neuronal genesis, differentiation and maturation), the synapse (neurotransmission and synapse plasticity), and elements of the immune system, the latter supporting our recent international FTD-GWAS. This is the largest genome-wide study in Italian FTD to date. Although our results are not conclusive, we set the basis for future replication studies and identification of susceptible molecular mechanisms involved in FTD pathogenesis

    SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis

    Get PDF
    Objective: There is increasing evidence that common genetic risk factors underlie frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Recently, mutations in the sequestosome 1 (SQSTM1) gene, which encodes p62 protein, have been reported in patients with ALS. P62 is a multifunctional adapter protein mainly involved in selective autophagy, oxidative stress response, and cell signaling pathways. The purpose of our study was to evaluate the frequency of SQSTM1 mutations in a dataset of unrelated patients with FTLD or ALS, in comparison with healthy controls and patients with Paget disease of bone (PDB). Methods: Promoter region and all exons of SQSTM1 were sequenced in a large group of subjects, including patients with FTLD or ALS, healthy controls, and patients with PDB. The clinical characteristics of patients with FTLD or ALS with gene mutations were examined. Results: We identified 6 missense mutations in the coding region of SQSTM1 in patients with either FTLD or ALS, none of which were found in healthy controls or patients with PDB. In silico analysis suggested a pathogenetic role for these mutations. Furthermore, 7 novel noncoding SQSTM1 variants were found in patients with FTLD and patients with ALS, including 4 variations in the promoter region. Conclusions: SQSTM1 mutations are present in patients with FTLD and patients with ALS. Additional studies are warranted in order to better investigate the role of p62 in the pathogenesis of both FTLD and ALS

    The impact of COVID-19 quarantine on patients with dementia and family caregivers: a nation-wide survey.

    Get PDF
    Quarantine for COVID-19 is associated with an acute worsening of clinical symptoms in patients with dementia as well as increase of caregivers’ burden. These findings emphasize the importance to implement new strategies to mitigate the effects of quarantine in patients with dementia

    30 days wild: development and evaluation of a large-scale nature engagement campaign to improve well-being

    Get PDF
    There is a need to increase people’s engagement with and connection to nature, both for human well-being and the conservation of nature itself. In order to suggest ways for people to engage with nature and create a wider social context to normalise nature engagement, The Wildlife Trusts developed a mass engagement campaign, 30 Days Wild. The campaign asked people to engage with nature every day for a month. 12,400 people signed up for 30 Days Wild via an online sign-up with an estimated 18,500 taking part overall, resulting in an estimated 300,000 engagements with nature by participants. Samples of those taking part were found to have sustained increases in happiness, health, connection to nature and pro-nature behaviours. With the improvement in health being predicted by the improvement in happiness, this relationship was mediated by the change in connection to nature

    Site-specific chromatin immunoprecipitation: a selective method to individually analyze neighboring transcription factor binding sites in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Transcription factors (TFs) and their binding sites (TFBSs) play a central role in the regulation of gene expression. It is therefore vital to know how the allocation pattern of TFBSs affects the functioning of any particular gene in vivo. A widely used method to analyze TFBSs in vivo is the chromatin immunoprecipitation (ChIP). However, this method in its present state does not enable the individual investigation of densely arranged TFBSs due to the underlying unspecific DNA fragmentation technique. This study describes a site-specific ChIP which aggregates the benefits of both EMSA and in vivo footprinting in only one assay, thereby allowing the individual detection and analysis of single binding motifs.</p> <p>Findings</p> <p>The standard ChIP protocol was modified by replacing the conventional DNA fragmentation, i. e. via sonication or undirected enzymatic digestion (by MNase), through a sequence specific enzymatic digestion step. This alteration enables the specific immunoprecipitation and individual examination of occupied sites, even in a complex system of adjacent binding motifs in vivo. Immunoprecipitated chromatin was analyzed by PCR using two primer sets - one for the specific detection of precipitated TFBSs and one for the validation of completeness of the enzyme digestion step. The method was established exemplary for Sp1 TFBSs within the <it>egfr </it>promoter region. Using this site-specific ChIP, we were able to confirm four previously described Sp1 binding sites within <it>egfr </it>promoter region to be occupied by Sp1 in vivo. Despite the dense arrangement of the Sp1 TFBSs the improved ChIP method was able to individually examine the allocation of all adjacent Sp1 TFBS at once. The broad applicability of this site-specific ChIP could be demonstrated by analyzing these SP1 motifs in both osteosarcoma cells and kidney carcinoma tissue.</p> <p>Conclusions</p> <p>The ChIP technology is a powerful tool for investigating transcription factors in vivo, especially in cancer biology. The established site-specific enzyme digestion enables a reliable and individual detection option for densely arranged binding motifs in vivo not provided by e.g. EMSA or in vivo footprinting. Given the important function of transcription factors in neoplastic mechanism, our method enables a broad diversity of application options for clinical studies.</p

    CAG Repeats Determine Brain Atrophy in Spinocerebellar Ataxia 17: A VBM Study

    Get PDF
    Abnormal repeat length has been associated with an earlier age of onset and more severe disease progression in the rare neurodegenerative disorder spinocerebellar ataxia 17 (SCA17).To determine whether specific structural brain degeneration and rate of disease progression in SCA17 might be associated with the CAG repeat size, observer-independent voxel-based morphometry was applied to high-resolution magnetic resonance images of 16 patients with SCA17 and 16 age-matched healthy controls. The main finding contrasting SCA17 patients with healthy controls demonstrated atrophy in the cerebellum bilaterally. Multiple regression analyses with available genetic data and also post-hoc correlations revealed an inverse relationship again with cerebellar atrophy. Moreover, we found an inverse relationship between the CAG repeat length and rate of disease progression.Our results highlight the fundamental role of the cerebellum in this neurodegenerative disease and support the genotype-phenotype relationship in SCA17 patients. Genetic factors may determine individual susceptibility to neurodegeneration and rate of disease progression
    corecore