6,400 research outputs found
Algebraic Models for Contextual Nets
We extend the algebraic approach of Meseguer and Montanari from ordinary place/transition Petri nets to contextual nets, covering both the collective and the individual token philosophy uniformly along the two interpretations of net behaviors
A solution to the anisotropy problem in bouncing cosmologies
Bouncing cosmologies are often proposed as alternatives to standard inflation
for the explanation of the homogeneity and flatness of the universe. In such
scenarios, the present cosmological expansion is preceded by a contraction
phase. However, during the contraction, in general the anisotropy of the
universe grows and eventually leads to a chaotic mixmaster behavior. This would
either be hard to reconcile with observations or even lead to a singularity
instead of the bounce. In order to preserve a smooth and isotropic bounce, the
source for the contraction must have a super-stiff equation of state with
. In this letter we propose a new mechanism to solve the anisotropy
problem for any low-energy value of by arguing that high energy physics
leads to a modification of the equation of state, with the introduction of
non-linear terms. In such a scenario, the anisotropy is strongly suppressed
during the high energy phase, allowing for a graceful isotropic bounce, even
when the low-energy value of is smaller than unity.Comment: 9 pages, accepted for publication in JCA
Functorial Semantics for Petri Nets under the Individual Token Philosophy
Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net
Coherence of PRNU weighted estimations for improved source camera identification
This paper presents a method for Photo Response Non Uniformity (PRNU) pattern noise based camera identification. It takes advantage of the coherence between different PRNU estimations restricted to specific image regions. The main idea is based on the following observations: different methods can be used for estimating PRNU contribution in a given image; the estimation has not the same accuracy in the whole image as a more faithful estimation is expected from flat regions. Hence, two different estimations of the reference PRNU have been considered in the classification procedure, and the coherence of the similarity metric between them, when evaluated in three different image regions, is used as classification feature. More coherence is expected in case of matching, i.e. the image has been acquired by the analysed device, than in the opposite case, where similarity metric is almost noisy and then unpredictable. Presented results show that the proposed approach provides comparable and often better classification results of some state of the art methods, showing to be robust to lack of flat field (FF) images availability, devices of the same brand or model, uploading/downloading from social networks
The Speciality Index as invariant indicator in the BKL Mixmaster Dynamics
The speciality index, which has been mainly used in Numerical Relativity for
studying gravitational waves phenomena as an indicator of the special or
non-special Petrov type character of a spacetime, is applied here in the
context of Mixmaster cosmology, using the Belinski-Khalatnikov-Lifshitz map.
Possible applications for the associated chaotic dynamics are discussed
Simultaneous follow-up of planetary transits: revised physical properties for the planetary systems HAT-P-16 and WASP-21
Context. By now more than 300 planets transiting their host star have been
found, and much effort is being put into measuring the properties of each
system. Light curves of planetary transits often contain deviations from a
simple transit shape, and it is generally difficult to differentiate between
anomalies of astrophysical nature (e.g. starspots) and correlated noise due to
instrumental or atmospheric effects. Our solution is to observe transit events
simultaneously with two telescopes located at different observatories. Aims.
Using this observational strategy, we look for anomalies in the light curves of
two transiting planetary systems and accurately estimate their physical
parameters. Methods. We present the first photometric follow-up of the
transiting planet HAT-P-16 b, and new photometric observations of WASP-21 b,
obtained simultaneously with two medium-class telescopes located in different
countries, using the telescope defocussing technique. We modeled these and
other published data in order to estimate the physical parameters of the two
planetary systems. Results. The simultaneous observations did not highlight
particular features in the light curves, which is consistent with the low
activity levels of the two stars. For HAT-P-16, we calculated a new ephemeris
and found that the planet is 1.3 \sigma colder and smaller (Rb = 1.190 \pm
0.037 RJup) than the initial estimates, suggesting the presence of a massive
core. Our physical parameters for this system point towards a younger age than
previously thought. The results obtained for WASP-21 reveal lower values for
the mass and the density of the planet (by 1.0 \sigma and 1.4 \sigma
respectively) with respect to those found in the discovery paper, in agreement
with a subsequent study. We found no evidence of any transit timing variations
in either system.Comment: 8 pages, 6 figures, accepted for publication in A&
Chemotherapy accelerates immune-senescence and functional impairments of Vδ2pos T cells in elderly patients affected by liver metastatic colorectal cancer.
Human (gamma delta) γδ T cells are unconventional innate-like lymphocytes displaying a broad array of anti-tumor activities with promising perspectives in cancer immunotherapy. In this context, Vδ2pos T cells represent the preferential target of several immunotherapy protocols against solid tumors. However, the impact of both aging and chemotherapy (CHT) on Vδ2pos T cells is still unknown. The present study evaluates with multi-parametric flow cytometry the frequencies, terminal differentiation, senescence and effector-functions of peripheral blood and tumor infiltrating Vδ2pos T cells purified from liver metastases (CLM) of patients affected by colorectal cancer (CRC) compared to those of sex- and age-matched healthy donors. The peripheral blood of CLM patients underwent CHT is characterized by decreased amounts of Vδ2pos T cells showing a relative increase of terminally-differentiated CD27neg/CD45RApos (TEMRA) cells. The enrichment of this latter subset is associated with an increased expression of the senescent marker CD57. The acquisition of CD57 on TEMRA Vδ2pos T cells is also coupled with impairments in cytotoxicity and production of TNF-α and IFN-γ. These features resemble the acquisition of an immune-senescent profile by Vδ2pos T cells from CLM patients that received CHT, a phenomenon that is also associated with the loss of the co-stimulatory marker CD28 and with the induced expression of CD16. The group of CLM patients underwent CHT and older than 60 years old showed higher frequencies of CD57pos and TEMRA Vδ2pos T cells. Similar results were found for tumor infiltrating Vδ2pos T cell subset purified from CLM specimens of patients treated with CHT. The toxicity of CHT regimens also affects the homeostasis of Vδ2pos T cells by inducing higher frequencies of circulating CD57pos TEMRA subset in CLM underwent CHT and younger than 60 years old. Taken together, our data demonstrate that the enrichment of senescent Vδ2pos T cells in CLM patients is not only induced by patients' aging but also by the toxicity of CHT that further accelerates the accumulation of CD57pos TEMRA cells highly dysfunctional in their anti-tumor activities. These results are important to both predict the clinical outcome of CLM and to optimize those protocols of cell cancer immunotherapy employing unconventional Vδ2pos T cells
Context-Based Defading of Archive Photographs
We present an algorithm for the enhancement of contrast in digitized archive photographic prints. It aims at producing an adaptive enhancement based on the local context of each pixel and is able to operate without direct user's intervention. A relation between the variation of contrast at different resolutions and the local Lipschitz regularity of the image is exploited. In this way, each pixel is defaded according to its nature: noise, edge, or smooth region. This strategy provides for an algorithm that drastically reduces typical, annoying artifacts like halo effects and noise amplification
Are Simple Real Pole Solutions Physical?
We consider exact solutions generated by the inverse scattering technique,
also known as the soliton transformation. In particular, we study the class of
simple real pole solutions. For quite some time, those solutions have been
considered interesting as models of cosmological shock waves. A coordinate
singularity on the wave fronts was removed by a transformation which induces a
null fluid with negative energy density on the wave front. This null fluid is
usually seen as another coordinate artifact, since there seems to be a general
belief that that this kind of solution can be seen as the real pole limit of
the smooth solution generated with a pair of complex conjugate poles in the
transformation. We perform this limit explicitly, and find that the belief is
unfounded: two coalescing complex conjugate poles cannot yield a solution with
one real pole. Instead, the two complex conjugate poles go to a different
limit, what we call a ``pole on a pole''. The limiting procedure is not unique;
it is sensitive to how quickly some parameters approach zero. We also show that
there exists no improved coordinate transformation which would remove the
negative energy density. We conclude that negative energy is an intrinsic part
of this class of solutions.Comment: 13 pages, 3 figure
Two-parameter non-linear spacetime perturbations: gauge transformations and gauge invariance
An implicit fundamental assumption in relativistic perturbation theory is
that there exists a parametric family of spacetimes that can be Taylor expanded
around a background. The choice of the latter is crucial to obtain a manageable
theory, so that it is sometime convenient to construct a perturbative formalism
based on two (or more) parameters. The study of perturbations of rotating stars
is a good example: in this case one can treat the stationary axisymmetric star
using a slow rotation approximation (expansion in the angular velocity Omega),
so that the background is spherical. Generic perturbations of the rotating star
(say parametrized by lambda) are then built on top of the axisymmetric
perturbations in Omega. Clearly, any interesting physics requires non-linear
perturbations, as at least terms lambda Omega need to be considered. In this
paper we analyse the gauge dependence of non-linear perturbations depending on
two parameters, derive explicit higher order gauge transformation rules, and
define gauge invariance. The formalism is completely general and can be used in
different applications of general relativity or any other spacetime theory.Comment: 22 pages, 3 figures. Minor changes to match the version appeared in
Classical and Quantum Gravit
- …