30 research outputs found

    Gold nanotube membranes: fabrication of controlled pore geometries and tailored surface chemistries

    Get PDF
    This study concerns the fabrication, chemical modification and characterisation of gold nanotube membranes using porous alumina (PA) membranes as templates. Electroless deposition was used to finely coat membranes with gold, forming gold nanotubes within the pores. PA templates were fabricated with straight and shaped pores thus allowing the fabrication of a wide range of gold nanotube geometries. The gold deposition process provides control over the pore size of the membrane, where pore sizes can be reduced to molecular dimensions. Chemical sensitivity was introduced into the membrane through the addition of self assembled monolayers (SAMs) of thiols. Characterisation of thiol assembly within the pores of the membrane was investigated using confocal Raman

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Raman Spectra of Carbon-Based Materials (from Graphite to Carbon Black) and of Some Silicone Composites

    No full text
    Carbon-based nanomaterials have emerged as a subject of enormous scientific attention due to their outstanding mechanical, electrical and thermal properties. Incorporated in a polymeric matrix, they are expected to significantly improve physical properties of the host medium at extremely small filler content. In this work, we report a characterization of various carbonaceous materials by Raman spectroscopy that has become a key technique for the analysis of different types of sp2 nanostructures, including one-dimensional carbon nanotubes, two-dimensional graphene and the effect of disorder in their structures. The dispersion behavior of the D and G’ Raman bands, that is, their shift to higher frequencies with increasing laser excitation energy, is used to assess the interfacial properties between the filler and the surrounding polymer in the composites

    Raman Microspectrometry as a New Approach to the Investigation of Molecular Recognition in Solids: Chloroform-Cryptophane Complexes

    No full text
    Information about the orientation and dynamics of a chloroform molecule encaged in cryptophane-A and cryptophane-E is obtained by means of Raman microspectrometry. The microscopy technique allows us to study the two observed crystalline structures of the CDCl3-cryptophane-A complexes separately. The spectra, recorded under different polarization conditions, are compared with those of CHCl3-D30-cryptophane-A and analyzed in light of the crystalline structures determined by X-ray diffraction. The spectral analysis is improved by ab initio calculations performed for the isolated guest and host molecules. The orientation of the encaged chloroform with the C-H bond pointing toward the center of the cyclotriveratrylene structures is confirmed. The CD (or CH) stretching wavenumber of chloroform is red shifted upon complexation as compared to the wavenumber of the gaseous isolated state. This red shift, larger for the CDCl3-cryptophane-E complex than for the CDCl3-cryptophane-A complex, is the signature of stronger binding host-guest interactions with cryptophane-E. In addition, the analysis of the band shape of the CD stretching vibration of chloroform suggests different rotational dynamics for the guest molecule encaged in cryptophane-A or in cryptophane-E. This work illustrates the capability of the Raman microspectrometry technique to investigate molecular recognition phenomena in solids

    Raman spectroscopy of white wines

    No full text
    The feasibility of exploiting Raman scattering to analyze white wines has been investigated using 3 different wavelengths of the incoming laser radiation in the near-UV (325 nm), visible (532 nm) and near infrared (785 nm). To help in the interpretation of the Raman spectra, the absorption properties in the UV–visible range of two wine samples as well as their laser induced fluorescence have also been investigated. Thanks to the strong intensity enhancement of the Raman scattered light due to electronic resonance with 325 nm laser excitation, hydroxycinnamic acids may be detected and analyzed selectively. Fructose and glucose may also be easily detected below ca. 1000 cm−1. This feasibility study demonstrates the potential of the Raman spectroscopic technique for the analysis of white wines

    Spectroscopic and theoretical investigations of phenolic acids in white wines

    No full text
    Model solutions of white wines containing phenolic acids have been investigated by means of UV–vis, laser induced fluorescence and Raman spectroscopic techniques. In order to interpret the spectra, density functional theory calculations of phenolic acids have been performed. This work demonstrates that only hydroxynamic acids are in resonance with a laser excitation line with 325 nm wavelength and are therefore at the origin of the strong enhancement of the Raman light scattering. Real white wines also display such resonance Raman scattering so that their content in hydroxycinnamic acids may be quite precisely determined. The analysis of the Raman spectrum of a real dry white wine reveals qualitatively the preponderance in its composition of p-coumaric and caftaric acids

    Guest Partitioning and Metastability of the Nitrogen Gas Hydrate

    No full text
    Gas clathrate hydrates or gas hydrates are made of H-bonded water molecules forming cages, within which gaseous (guest) molecules are encapsulated. The formed clathrate structures, which may be metastable, depend on the nature and on the partitioning of the guest molecules in the water cage. This work focuses on the structural and vibrational properties of nitrogen hydrate in its two clathrate forms (namely, SI and SII) in the thermodynamic ranges 50–200 bar and 150–270 K, together with a comprehensive analysis of the transformation from SI to SII of this gas hydrate. The thermal expansion of both structures has been measured at 1 bar, and the melting of the nitrogen hydrate has been measured at ca. 210 K at 1 bar. Moreover, the SI structure is metastable in the studied pressure region: from time-dependent neutron powder diffraction analysis, it is shown that the SI structure transforms over time to the SII structure with a rate of (1.37 ± 0.17) × 10<sup>5</sup> s<sup>–1</sup> at 100 K and at 1 bar. The transformation is also characterized by an induction time (i.e., the lifetime of the pure SI structure) of 0.49 day. We have also investigated the guest partitioning of the nitrogen hydrate using high-resolution Raman scattering. Vibrational bands of nitrogen molecules encapsulated in large cages are measured at lower wavenumbers than the one associated with encapsulation in small cages (by 1.1 cm<sup>–1</sup> in SI and 0.8 cm<sup>–1</sup> in SII). In the case of the thermodynamically stable SII phase, the dependence of the guest partitioning has been characterized as a function of the pressure–temperature conditions. Variation of the relative cage filling is demonstrated. While the small cages remain singly occupied according to previous neutron diffraction analysis, this variation is attributed to large cages of the nitrogen hydrate that easily catch or release nitrogen guest molecules. This study thus provides new opportunities for preparing nitrogen gas hydrates with a “targeted” structure and relative cage filling not only by varying the pressure and temperature but also by playing with the structural metastability
    corecore