5,901 research outputs found
Data driven SMART intercontinental overlay networks
This paper addresses the use of Big Data and machine learning based analytics to the real-time management of Internet scale Quality-of-Service Route Optimisation with the help of an overlay network. Based on the collection of large amounts of data sampled each minutes over a large number of source-destinations pairs, we show that intercontinental Internet Protocol (IP) paths are far from optimal with respect to Quality of Service (QoS) metrics such as end-to-end round-trip delay. We therefore develop a machine learning based scheme that exploits large scale data collected from communicating node pairs in a multi-hop overlay network that uses IP between the overlay nodes themselves, to select paths that provide substantially better QoS than IP. The approach inspired from Cognitive Packet Network protocol, uses Random Neural Networks with Reinforcement Learning based on the massive data that is collected, to select intermediate overlay hops resulting in significantly better QoS than IP itself. The routing scheme is illustrated on a -node intercontinental overlay network that collects close to measurements per week, and makes scalable distributed routing decisions. Experimental results show that this approach improves QoS significantly and efficiently in a scalable manner
Phloem sap exudates as a criterion for sink strength appreciation in Vitis vinifera cv. Pinot noir grapevines
The temporal evolution of the main compounds present in the phloem sap feeding the cluster of Vitis vinifera Pinot noir has been determined from the beginning of flowering until fruit set, after improvement of the facilitated exudation technique. The retained composition for the dipping solution was: HEPES (10 mM, pH 7.5), EDTA (10 mM). The first ramification of the cluster, maintained in situ, was sectionned then immersed in the dipping solution in order to favour the phloem exudation. The major organic components of the phloem sap were carbohydrates, amino acids and organic acids (i.e. sucrose, glutamine and tartrate, respectively). For each metabolic group, the mean exuded quantities correspond to 300 nmol per cluster in 4 h. The sharp increase in both organic compounds and potassium released over the flowering time-course reflects the rise of the mass flow supplying the cluster and underline the increasing sink strength of this organ. Moreover, the increasing contents of glutamine and hexoses in the exudate suggest a regulation in the allocation of assimilates to the reproductive organs.Les exsudats de sève phloémique comme critère d'appreciation de la force de puits de la grappe chez Vitis vinifera cv. Pinot noirL'évolution temporelle des principaux constituants de la sève libérienne alimentant la grappe de Vitis vinifera Pinot noir a été étudiée au cours de la floraison, après adaptation d'une technique de prélèvement par exsudation facilitée. La composition de la solution d'exsudation retenue est la suivante: HEPES (10 mM, pH 7,5), EDTA (10 mM). Sur la grappe maintenue in situ, l'extrémité de la première ramification est sectionnée puis immergée dans le milieu précédemment défini pour permettre la récupération des assimilats. Les composés organiques prédominants dans la sève libérienne sont les glucides solubles, les acides aminés et les acides organiques (saccharose, glutamine et tartrate respectivement). Pour chacun de ces groupes métaboliques, les quantités moyennes exsudées sont voisines de 300 nmol par grappe en 4 heures. Les quantités croissantes de glucides, d'acides aminés et de potassium collectées entre Je début de l'anthèse et la nouaison reflètent l'augmentation de flux de masse parvenant à la grappe et soulignent l'évolution de la force d'appel de ce puits. De plus, la part croissante de la glutamine et des hexoses dans les exsudats suggère une régulation dans la distribution des assimilats aux organes reproducteurs
HeII emitters in the VIMOS VLT Deep Survey: PopIII star formation or peculiar stellar populations in galaxies at 2<z<4.6?
The aim of this work is to identify HeII emitters at 2<z<4.6 and to constrain
the source of the hard ionizing continuum that powers the HeII emission. We
have assembled a sample of 277 galaxies with a high quality spectroscopic
redshift at 2<z<4.6 from the VVDS survey, and we have identified 39 HeII1640A
emitters. We study their spectral properties, measuring the fluxes, equivalent
widths (EW) and FWHM for most relevant lines. About 10% of galaxies at z~3 show
HeII in emission, with rest frame equivalent widths EW0~1-7A, equally
distributed between galaxies with Lya in emission or in absorption. We find 11
high-quality HeII emitters with unresolved HeII line (FWHM_0<1200km/s), 13
high-quality emitters with broad He II emission (FWHM_0>1200km/s), 3 AGN, and
an additional 12 possible HeII emitters. The properties of the individual broad
emitters are in agreement with expectations from a W-R model. On the contrary,
the properties of the narrow emitters are not compatible with such model,
neither with predictions of gravitational cooling radiation produced by gas
accretion. Rather, we find that the EW of the narrow HeII line emitters are in
agreement with expectations for a PopIII star formation, if the episode of star
formation is continuous, and we calculate that a PopIII SFR of 0.1-10 Mo yr-1
only is enough to sustain the observed HeII flux. We conclude that narrow HeII
emitters are either powered by the ionizing flux from a stellar population rare
at z~0 but much more common at z~3, or by PopIII star formation. As proposed by
Tornatore et al. (2007), incomplete ISM mixing may leave some small pockets of
pristine gas at the periphery of galaxies from which PopIII may form, even down
to z~2 or lower. If this interpretation is correct, we measure at z~3 a SFRD in
PopIII stars of 10^6Mo yr^-1 Mpc^-3 qualitatively comparable to the value
predicted by Tornatore et al. (2007).Comment: accepted for publication in A&
Studying the evolution of large-scale structure with the VIMOS-VLT Deep Survey
The VIMOS-VLT Deep Survey (VVDS) currently offers a unique combination of
depth, angular size and number of measured galaxies among surveys of the
distant Universe: ~ 11,000 spectra over 0.5 deg2 to I_{AB}=24 (VVDS-Deep),
35,000 spectra over ~ 7 deg2 to I_{AB}=22.5 (VVDS-Wide). The current ``First
Epoch'' data from VVDS-Deep already allow investigations of galaxy clustering
and its dependence on galaxy properties to be extended to redshifts ~1.2-1.5,
in addition to measuring accurately evolution in the properties of galaxies up
to z~4. This paper concentrates on the main results obtained so far on galaxy
clustering. Overall, L* galaxies at z~ 1.5 show a correlation length r_0=3.6\pm
0.7. As a consequence, the linear galaxy bias at fixed luminosity rises over
the same range from the value b~1 measured locally, to b=1.5 +/- 0.1. The
interplay of galaxy and structure evolution in producing this observation is
discussed in some detail. Galaxy clustering is found to depend on galaxy
luminosity also at z~ 1, but luminous galaxies at this redshift show a
significantly steeper small-scale correlation function than their z=0
counterparts. Finally, red galaxies remain more clustered than blue galaxies
out to similar redshifts, with a nearly constant relative bias among the two
classes, b_{rel}~1.4, despite the rather dramatic evolution of the
color-density relation over the same redshift range.Comment: 14 pages. Extended, combined version of two invited review papers
presented at: 1) XXVIth Astrophysics Moriond Meeting: "From Dark Halos to
Light", March 2006, proc. edited by L.Tresse, S. Maurogordato and J. Tran
Thanh Van (Editions Frontieres); 2) Vulcano Workshop 2006 "Frontier Objects
in Astrophysics and Particle Physics", May 2006, proc. edited by F.
Giovannelli & G. Mannocchi, Italian Physical Society (Editrice Compositori,
Bologna
Quasiclassical Equations of Motion for Nonlinear Brownian Systems
Following the formalism of Gell-Mann and Hartle, phenomenological equations
of motion are derived from the decoherence functional formalism of quantum
mechanics, using a path-integral description. This is done explicitly for the
case of a system interacting with a ``bath'' of harmonic oscillators whose
individual motions are neglected. The results are compared to the equations
derived from the purely classical theory. The case of linear interactions is
treated exactly, and nonlinear interactions are compared using classical and
quantum perturbation theory.Comment: 24 pages, CALT-68-1848 (RevTeX 2.0 macros
The Thorium Molten Salt Reactor : Moving on from the MSBR
A re-evaluation of the Molten Salt Breeder Reactor concept has revealed
problems related to its safety and to the complexity of the reprocessing
considered. A reflection is carried out anew in view of finding innovative
solutions leading to the Thorium Molten Salt Reactor concept. Several main
constraints are established and serve as guides to parametric evaluations.
These then give an understanding of the influence of important core parameters
on the reactor's operation. The aim of this paper is to discuss this vast
research domain and to single out the Molten Salt Reactor configurations that
deserve further evaluation.Comment: 11 pages, 8 figures, 6 table
Long-Term Survival in Adult Neuroblastoma with Multiple Recurrences
Neuroblastoma (NB) rarely occurs in adults, and less than 10% of the cases occur in patients older than 10 years. Currently, there are no standard treatment guidelines for adult NB patients. We report the case of a young man suffering from NB in adulthood with multiple recurrences. Treatment included multiple resections, chemotherapy, and radiotherapy. This patient remains free of clinical disease more than 7 years after diagnosis
The extended epoch of galaxy formation: age dating of ~3600 galaxies with 2<z<6.5 in the VIMOS Ultra-Deep Survey
We aim at improving constraints on the epoch of galaxy formation by measuring
the ages of 3597 galaxies with spectroscopic redshifts 2<z<6.5 in the VIMOS
Ultra Deep Survey (VUDS). We derive ages and other physical parameters from the
simultaneous fitting with the GOSSIP+ software of observed UV rest-frame
spectra and photometric data from the u-band up to 4.5 microns using composite
stellar population models. We conclude from extensive simulations that at z>2
the joint analysis of spectroscopy and photometry combined with restricted age
possibilities when taking into account the age of the Universe substantially
reduces systematic uncertainties and degeneracies in the age derivation. We
find galaxy ages ranging from very young with a few tens of million years to
substantially evolved with ages up to ~1.5-2 Gyr. The formation redshifts z_f
derived from the measured ages indicate that galaxies may have started forming
stars as early as z_f~15. We produce the formation redshift function (FzF), the
number of galaxies per unit volume formed at a redshift z_f, and compare the
FzF in increasing redshift bins finding a remarkably constant 'universal' FzF.
The FzF is parametrized with (1+z)^\zeta, with \zeta~0.58+/-0.06, indicating a
smooth 2 dex increase from z~15 to z~2. Remarkably this observed increase is of
the same order as the observed rise in the star formation rate density (SFRD).
The ratio of the SFRD with the FzF gives an average SFR per galaxy of
~7-17Msun/yr at z~4-6, in agreement with the measured SFR for galaxies at these
redshifts. From the smooth rise in the FzF we infer that the period of galaxy
formation extends from the highest possible redshifts that we can probe at z~15
down to redshifts z~2. This indicates that galaxy formation is a continuous
process over cosmic time, with a higher number of galaxies forming at the peak
in SFRD at z~2 than at earlier epochs. (Abridged)Comment: Submitted to A&A, 24 page
Fast Thorium Molten Salt Reactors started with Plutonium
One of the pending questions concerning Molten Salt Reactors based on the 232Th/233U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since 233U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing 233U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce 233U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/233U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into 233U. A particular reactor configuration is used, called unique channel configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactors characteristics turn out to be equivalent to Molten Salt Reactors operated with 233U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with 233U, the deployment capabilities of these reactors fully satisfy the condition of sustainability
3D imaging of theranostic nanoparticles in mice organs by means of x-ray phase contrast tomography
Theranostics is an innovative research field that aims to develop high target specificity cancer treatments by administering small metal-based nanoparticles (NPs). This new generation of compounds exhibits diagnostic and therapeutic properties due to the high atomic number of their metal component. In the framework of a combined research program on low dose X-ray imaging and theranostic NPs, X-ray Phase Contrast Tomography (XPCT) was performed at ESRF using a 3 \u3bcm pixel optical system on two samples: a mouse brain bearing melanoma metastases injected with gadolinium NPs and, a mouse liver injected with gold NPs. XPCT is a non-destructive technique suitable to achieve the 3D reconstruction of a specimen and, widely used at micro-scale to detect abnormalities of the vessels, which are associated to the tumor growth or to the development of neurodegenerative diseases. Moreover, XPCT represents a promising and complementary tool to study the biodistribution of theranostic NPs in biological materials, thanks to the strong contrast with respect to soft tissues that metal-based NPs provide in radiological images. This work is relied on an original imaging approach based on the evaluation of the contrast differences between the images acquired below and above K-edge energies, as a proof of the certain localization of NPs. We will present different methods aiming to enhance the localization of NPs and a 3D map of their distribution in large volume of tissues
- …