131 research outputs found

    Expression of Regulatory Platelet MicroRNAs in Patients with Sickle Cell Disease

    Get PDF
    Background: Increased platelet activation in sickle cell disease (SCD) contributes to a state of hypercoagulability and confers a risk of thromboembolic complications. The role for post-transcriptional regulation of the platelet transcriptome by microRNAs (miRNAs) in SCD has not been previously explored. This is the first study to determine whether platelets from SCD exhibit an altered miRNA expression profile. Methods and Findings: We analyzed the expression of miRNAs isolated from platelets from a primary cohort (SCD = 19, controls = 10) and a validation cohort (SCD = 7, controls = 7) by hybridizing to the Agilent miRNA microarrays. A dramatic difference in miRNA expression profiles between patients and controls was noted in both cohorts separately. A total of 40 differentially expressed platelet miRNAs were identified as common in both cohorts (p-value 0.05, fold change>2) with 24 miRNAs downregulated. Interestingly, 14 of the 24 downregulated miRNAs were members of three families - miR-329, miR-376 and miR-154 - which localized to the epigenetically regulated, maternally imprinted chromosome 14q32 region. We validated the downregulated miRNAs, miR-376a and miR-409-3p, and an upregulated miR-1225-3p using qRT-PCR. Over-expression of the miR-1225-3p in the Meg01 cells was followed by mRNA expression profiling to identify mRNA targets. This resulted in significant transcriptional repression of 1605 transcripts. A combinatorial approach using Meg01 mRNA expression profiles following miR-1225-3p overexpression, a computational prediction analysis of miRNA target sequences and a previously published set of differentially expressed platelet transcripts from SCD patients, identified three novel platelet mRNA targets: PBXIP1, PLAGL2 and PHF20L1. Conclusions: We have identified significant differences in functionally active platelet miRNAs in patients with SCD as compared to controls. These data provide an important inventory of differentially expressed miRNAs in SCD patients and an experimental framework for future studies of miRNAs as regulators of biological pathways in platelets. © 2013 Jain et al

    Differences in Gene Expression between First and Third Trimester Human Placenta: A Microarray Study

    Get PDF
    BACKGROUND: The human placenta is a rapidly developing organ that undergoes structural and functional changes throughout the pregnancy. Our objectives were to investigate the differences in global gene expression profile, the expression of imprinted genes and the effect of smoking in first and third trimester normal human placentas. MATERIALS AND METHODS: Placental samples were collected from 21 women with uncomplicated pregnancies delivered at term and 16 healthy women undergoing termination of pregnancy at 9-12 weeks gestation. Placental gene expression profile was evaluated by Human Genome Survey Microarray v.2.0 (Applied Biosystems) and real-time polymerase chain reaction. RESULTS: Almost 25% of the genes spotted on the array (n = 7519) were differentially expressed between first and third trimester placentas. Genes regulating biological processes involved in cell proliferation, cell differentiation and angiogenesis were up-regulated in the first trimester; whereas cell surface receptor mediated signal transduction, G-protein mediated signalling, ion transport, neuronal activities and chemosensory perception were up-regulated in the third trimester. Pathway analysis showed that brain and placenta might share common developmental routes. Principal component analysis based on the expression of 17 imprinted genes showed a clear separation of first and third trimester placentas, indicating that epigenetic modifications occur throughout pregnancy. In smokers, a set of genes encoding oxidoreductases were differentially expressed in both trimesters. CONCLUSIONS: Differences in global gene expression profile between first and third trimester human placenta reflect temporal changes in placental structure and function. Epigenetic rearrangements in the human placenta seem to occur across gestation, indicating the importance of environmental influence in the developing feto-placental unit

    The research on the immuno-modulatory defect of Mesenchymal Stem Cell from Chronic Myeloid Leukemia patients

    Get PDF
    Overwhelming evidence from leukemia research has shown that the clonal population of neoplastic cells exhibits marked heterogeneity with respect to proliferation and differentiation. There are rare stem cells within the leukemic population that possess extensive proliferation and self-renewal capacity not found in the majority of the leukemic cells. These leukemic stem cells are necessary and sufficient to maintain the leukemia. While the hematopoietic stem cell (HSC) origin of CML was first suggested over 30 years ago, recently CML-initiating cells beyond HSCs are also being investigated. We have previously isolated fetal liver kinase-1-positive (Flk1+) cells carrying the BCR/ABL fusion gene from the bone marrow of Philadelphia chromosome-positive (Ph+) patients with hemangioblast property. Here, we showed that CML patient-derived Flk1+CD31-CD34-MSCs had normal morphology, phenotype and karyotype but appeared impaired in immuno-modulatory function. The capacity of patient Flk1+CD31-CD34- MSCs to inhibit T lymphocyte activation and proliferation was impaired in vitro. CML patient-derived MSCs have impaired immuno-modulatory functions, suggesting that the dysregulation of hematopoiesis and immune response may originate from MSCs rather than HSCs. MSCs might be a potential target for developing efficacious cures for CML

    Haemolysis during Sample Preparation Alters microRNA Content of Plasma

    Get PDF
    The presence of cell-free microRNAs (miRNAs) has been detected in a range of body fluids. The miRNA content of plasma/serum in particular has been proposed as a potential source of novel biomarkers for a number of diseases. Nevertheless, the quantification of miRNAs from plasma or serum is made difficult due to inefficient isolation and lack of consensus regarding the optimal reference miRNA. The effect of haemolysis on the quantification and normalisation of miRNAs in plasma has not been investigated in great detail. We found that levels of miR-16, a commonly used reference gene, showed little variation when measured in plasma samples from healthy volunteers or patients with malignant mesothelioma or coronary artery disease. Including samples with evidence of haemolysis led to variation in miR-16 levels and consequently decreased its ability to serve as a reference. The levels of miR-16 and miR-451, both present in significant levels in red blood cells, were proportional to the degree of haemolysis. Measurements of the level of these miRNAs in whole blood, plasma, red blood cells and peripheral blood mononuclear cells revealed that the miRNA content of red blood cells represents the major source of variation in miR-16 and miR-451 levels measured in plasma. Adding lysed red blood cells to non-haemolysed plasma allowed a cut-off level of free haemoglobin to be determined, below which miR-16 and miR-451 levels displayed little variation between individuals. In conclusion, increases in plasma miR-16 and miR-451 are caused by haemolysis. In the absence of haemolysis the levels of both miR-16 and miR-451 are sufficiently constant to serve as normalisers

    Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function

    Get PDF
    Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory

    Detection of microRNA Expression in Human Peripheral Blood Microvesicles

    Get PDF
    MicroRNAs (miRNA) are small non-coding RNAs that regulate translation of mRNA and protein. Loss or enhanced expression of miRNAs is associated with several diseases, including cancer. However, the identification of circulating miRNA in healthy donors is not well characterized. Microvesicles, also known as exosomes or microparticles, circulate in the peripheral blood and can stimulate cellular signaling. In this study, we hypothesized that under normal healthy conditions, microvesicles contain miRNAs, contributing to biological homeostasis.Microvesicles were isolated from the plasma of normal healthy individuals. RNA was isolated from both the microvesicles and matched mononuclear cells and profiled for 420 known mature miRNAs by real-time PCR. Hierarchical clustering of the data sets indicated significant differences in miRNA expression between peripheral blood mononuclear cells (PBMC) and plasma microvesicles. We observed 71 miRNAs co-expressed between microvesicles and PBMC. Notably, we found 33 and 4 significantly differentially expressed miRNAs in the plasma microvesicles and mononuclear cells, respectively. Prediction of the gene targets and associated biological pathways regulated by the detected miRNAs was performed. The majority of the miRNAs expressed in the microvesicles from the blood were predicted to regulate cellular differentiation of blood cells and metabolic pathways. Interestingly, a select few miRNAs were also predicted to be important modulators of immune function.This study is the first to identify and define miRNA expression in circulating plasma microvesicles of normal subjects. The data generated from this study provides a basis for future studies to determine the predictive role of peripheral blood miRNA signatures in human disease and will enable the definition of the biological processes regulated by these miRNA

    Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies

    Get PDF
    The myeloproliferative neoplasms (MPNs) are a group of clonal hematological malignancies characterized by a hypercellular bone marrow and a tendency to develop thrombotic complications and to evolve to myelofibrosis and acute leukemia. Unlike chronic myelogenous leukemia, where a single disease-initiating genetic event has been identified, a more complicated series of genetic mutations appear to be responsible for the BCR-ABL1-negative MPNs which include polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Recent studies have revealed a number of epigenetic alterations that also likely contribute to disease pathogenesis and determine clinical outcome. Increasing evidence indicates that alterations in DNA methylation, histone modification, and microRNA expression patterns can collectively influence gene expression and potentially contribute to MPN pathogenesis. Examples include mutations in genes encoding proteins that modify chromatin structure (EZH2, ASXL1, IDH1/2, JAK2V617F, and IKZF1) as well as epigenetic modification of genes critical for cell proliferation and survival (suppressors of cytokine signaling, polycythemia rubra vera-1, CXC chemokine receptor 4, and histone deacetylase (HDAC)). These epigenetic lesions serve as novel targets for experimental therapeutic interventions. Clinical trials are currently underway evaluating HDAC inhibitors and DNA methyltransferase inhibitors for the treatment of patients with MPNs

    Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy

    Get PDF
    Very limited information on the post-implantatory effects of vitrification has been published till now. We observed in a previous study that the vitrification procedure for the cryopreservation of embryos introduced transcriptomic and proteomic modifications in the rabbit foetal placenta at the middle of gestation. Now, we have conducted a proteomic study to determine whether protein alterations in the foetal placenta induced by the vitrification procedure remain during pregnancy. In this study, we used 2D-DIGE and mass spectrometry (MALDI-TOF-TOF and LC-MS/MS analysis) to identify the protein changes during middle and late stages of gestation (Day 14 and Day 24, respectively) in rabbit foetal placenta. We identified 11 differentially expressed proteins at Day 14 and 13 proteins at Day 24. Data are available via ProteomeXchange with identifiers PXD001840 and PXD001836. In addition, we demonstrate the presence of three proteins, serum albumin, isocitrate dehydrogenase 1 [NADP+], and phosphoglycerate mutase 1, which were altered during pregnancy. We demonstrate the existence of changes in foetal placental protein during pregnancy induced by the vitrification procedure, which brings into question whether vitrification effects observed during foetal development could lead to physiological and metabolic disorders in adulthood. This effect, taken together with other effects reported in the literature, suggests that embryo cryopreservation is not neutral.This work was supported by the Generalitat Valenciana research program (Prometeo 2014/036) and the Spanish Research Projects (CICYT AGL2011-29831-C03-01). M. D. Saenz-de-Juano was supported by a research grant from Generalitat Valenciana (Programa VALI+d, ACIF/2011/254). Nofima AS provided support in the form of salaries for author KH, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the Author Contributions section.Saenz De Juano Ribes, MDLD.; Vicente Antón, JS.; Hollung, K.; Marco Jiménez, F. (2015). Effect of Embryo Vitrification on Rabbit Foetal Placenta Proteome during Pregnancy. PLoS ONE. 10(4):e0125157-e0125157. https://doi.org/10.1371/journal.pone.0125157Se0125157e012515710
    corecore