2,067 research outputs found

    Rigorous approach to the comparison between experiment and theory in Casimir force measurements

    Get PDF
    In most experiments on the Casimir force the comparison between measurement data and theory was done using the concept of the root-mean-square deviation, a procedure that has been criticized in literature. Here we propose a special statistical analysis which should be performed separately for the experimental data and for the results of the theoretical computations. In so doing, the random, systematic, and total experimental errors are found as functions of separation, taking into account the distribution laws for each error at 95% confidence. Independently, all theoretical errors are combined to obtain the total theoretical error at the same confidence. Finally, the confidence interval for the differences between theoretical and experimental values is obtained as a function of separation. This rigorous approach is applied to two recent experiments on the Casimir effect.Comment: 10 pages, iopart.cls is used, to appear in J. Phys. A (special issue: Proceedings of QFEXT05, Barcelona, Sept. 5-9, 2005

    The survivability of phyllosilicates and carbonates impacting Stardust Al foils: Facilitating the search for cometary water

    Get PDF
    Comet 81P/Wild 2 samples returned by NASA's Stardust mission provide an unequalled opportunity to study the contents of, and hence conditions and processes operating on, comets. They can potentially validate contentious interpretations of cometary infrared spectra and in situ mass spectrometry data: specifically the identification of phyllosilicates and carbonates. However, Wild 2 dust was collected via impact into capture media at ~6 km s−1, leading to uncertainty as to whether these minerals were captured intact, and, if subjected to alteration, whether they remain recognizable. We simulated Stardust Al foil capture conditions using a two‐stage light‐gas gun, and directly compared transmission electron microscope analyses of pre‐ and postimpact samples to investigate survivability of lizardite and cronstedtite (phyllosilicates) and calcite (carbonate). We find the phyllosilicates do not survive impact as intact crystalline materials but as moderately to highly vesiculated amorphous residues lining resultant impact craters, whose bulk cation to Si ratios remain close to that of the impacting grain. Closer inspection reveals variation in these elements on a submicron scale, where impact‐induced melting accompanied by reducing conditions (due to the production of oxygen scavenging molten Al from the target foils) has resulted in the production of native silicon and Fe‐ and Fe‐Si‐rich phases. In contrast, large areas of crystalline calcite are preserved within the calcite residue, with smaller regions of vesiculated, Al‐bearing calcic glass. Unambiguous identification of calcite impactors on Stardust Al foil is therefore possible, while phyllosilicate impactors may be inferred from vesiculated residues with appropriate bulk cation to Si ratios. Finally, we demonstrate that the characteristic textures and elemental distributions identifying phyllosilicates and carbonates by transmission electron microscopy can also be observed by state‐of‐the‐art scanning electron microscopy providing rapid, nondestructive initial mineral identifications in Stardust residues

    Increased Glycemic Variability Is Independently Associated With Length of Stay and Mortality in Noncritically Ill Hospitalized Patients

    Get PDF
    OBJECTIVE To investigate the association between glycemic variability (GV) and both length of stay (LOS) and 90-day mortality in noncritically ill hospitalized patients. RESEARCH DESIGN AND METHODS This study retrospectively analyzed 4,262 admissions to the general medicine or surgery services during a 2 year period. Patients with point-of-care glucose monitoring and a minimum of two glucose values per day on average were selected. GV was assessed by SD and coefficient of variation (CV). Data were analyzed with linear and logistic multivariate regression analysis in separate models for SD and CV. Analysis was performed with generalized estimating equations to adjust for correlation between multiple admissions in some individual cases. RESULTS After exclusions, 935 admissions comprised the sample. Results of adjusted analysis indicate that for every 10 mg/dL increase in SD and 10ñ€“percentage point increase in CV, LOS increased by 4.4 and 9.7%, respectively. Relative risk of death in 90 days also increased by 8% for every 10-mg/dL increase in SD. These associations were independent of age, race, service of care (medicine or surgery), previous diagnosis of diabetes, HbA1c, BMI, the use of regular insulin as a sole regimen, mean glucose, and hypoglycemia occurrence during the hospitalization. CONCLUSIONS Our results indicate that increased GV during hospitalization is independently associated with longer LOS and increased mortality in noncritically ill patients. Prospective studies with continuous glucose monitoring are necessary to investigate this association thoroughly and to generate therapeutic strategies targeted at decreasing GV. Inpatient hyperglycemia is common, and it has been associated with increased morbidity and mortality in patients with and without diabetes (1ñ€“7). In the intensive care unit (ICU) setting, hypoglycemia has also been independently associated with a significant increase in mortality (8ñ€“10). Recently, a third metric of glucose control, known as glycemic variability (GV), has been proposed to be additionally implicated in the disease-associated process of dysglycemia (11). GV refers to fluctuations of blood glucose values around the mean and has been posited as a novel marker for poor glycemic control (12,13). In vitro and human studies suggest that high GV leads to greater oxidative stress than does sustained hyperglycemia (14,15). Studies of ICU patients have consistently demonstrated that increased GV is independently associated with higher mortality (16ñ€“19). Notably, results from a large multicenter study concluded that GV was a stronger predictor of ICU mortality than was mean glucose concentrations (20). Although there is no consensus as to the best method to determine GV in hospitalized patients, the use of SD of glucose values has been well validated by previous ICU studies (16,20). Coefficient of variation (CV) has also been suggested as a strong independent index for measuring GV because it corrects for mean glucose levels (21,22). Despite substantial scientific evidence from the ICU, no previous studies have investigated the association between GV and clinical outcomes in patients admitted to the general medical and surgical wards. The purpose of this study was therefore to investigate the association between GV and length of stay (LOS) and 90-day mortality in noncritically ill hospitalized patients. We hypothesize that increased GV in this setting is associated with increased LOS and mortality

    Antecedent anti-NMDA receptor encephalitis in two patients with multiple sclerosis

    Get PDF
    Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune disorder characterised by psychiatric symptoms, movement disorder and seizures often evolving into a severe encephalopathy. An overlap has recently been recognised between anti-NMDAR encephalitis and inflammatory demyelinating disorders, particularly neuromyelitis optical spectrum disorder (NMOSD). In this case report, we describe two patients with an initial presentation consistent with anti-NMDAR encephalitis who have subsequently developed relapsing-remitting multiple sclerosis (MS) and discuss the literature pertaining to potential overlap between NMDAR encephalitis and inflammatory demyelinating disorders

    Casimir Effect as a Test for Thermal Corrections and Hypothetical Long-Range Interactions

    Full text link
    We have performed a precise experimental determination of the Casimir pressure between two gold-coated parallel plates by means of a micromachined oscillator. In contrast to all previous experiments on the Casimir effect, where a small relative error (varying from 1% to 15%) was achieved only at the shortest separation, our smallest experimental error (∌0.5\sim 0.5%) is achieved over a wide separation range from 170 nm to 300 nm at 95% confidence. We have formulated a rigorous metrological procedure for the comparison of experiment and theory without resorting to the previously used root-mean-square deviation, which has been criticized in the literature. This enables us to discriminate among different competing theories of the thermal Casimir force, and to resolve a thermodynamic puzzle arising from the application of Lifshitz theory to real metals. Our results lead to a more rigorous approach for obtaining constraints on hypothetical long-range interactions predicted by extra-dimensional physics and other extensions of the Standard Model. In particular, the constraints on non-Newtonian gravity are strengthened by up to a factor of 20 in a wide interaction range at 95% confidence.Comment: 17 pages, 7 figures, Sixth Alexander Friedmann International Seminar on Gravitation and Cosmolog

    Modelling polarization properties of comet 1P/Halley using a mixture of compact and aggregate particles

    Full text link
    Recently, the result obtained from `Stardust' mission suggests that the overall ratio of compact to aggregate particles is 65:35 (or 13:7) for Comet 81P/Wild 2 (Burchell et al. 2008). In the present work, we propose a model which considers cometary dust as a mixture of compact and aggregate particles, with composition of silicate and organic. We consider compact particles as spheroidal particles and aggregates as BCCA and BAM2 aggregate with some size distribution. For modeling Comet 1P/ Halley, the power-law size distribution n(a)= a^{-2.6}, for both compact and aggregate particles is taken. We take a mixture of BAM2 and BCCA aggregates with a lower and upper cutoff size around 0.20Όm\mu m and 1Όm\mu m. We also take a mixture of prolate, spherical and oblate compact particles with axial ratio (E) from 0.8 to 1.2 where a lower and upper cutoff size around 0.1Όm\mu m and 10Όm\mu m are taken. Using T-matrix code, the average simulated polarization curves are generated which can best fit the observed polarization data at the four wavelengths λ\lambda = 0.365Όm\mu m, 0.485Όm\mu m, 0.670Όm\mu m and 0.684Όm\mu m. The suitable mixing percentage of aggregates emerging out from the present modeling corresponds to 50% BAM2 and 50% BCCA particles and silicate to organic mixing percentage corresponds to 78% silicate and 22% organic in terms of volume. The present model successfully reproduces the observed polarization data, especially the negative branch, more effectively as compared to other work done in the past. It is found that among the aggregates, the BAM2 aggregate plays a major role, in deciding the cross-over angle and depth of negative polarization branch.Comment: 7 pages, 5 figures (accepted for publication in MNRAS on May 4, 2011
    • 

    corecore