9,548 research outputs found

    Indirect Dissociative Recombination of LiH+^+ Molecules Fueled by Complex Resonance Manifolds

    Get PDF
    The LiH+^{+} molecule is prototypical of the indirect dissociative recombination (DR) process, in which a colliding electron destroys the molecule through Rydberg capture pathways. This Letter develops the first quantitative test of the Siegert state multichannel quantum defect theory description of indirect DR for a diatomic molecular ion. The R-matrix approach is adopted to calculate ab-initio quantum defects, functions of the internuclear distance that characterize both Rydberg states and the zero-energy collisions of electrons with LiH+^{+} ions. The calculated DR rate coefficient agrees accurately with recent experimental data (S. Krohn et al, Phys. Rev. Lett. 86, 4005). We identify the doorways to fast indirect DR as complex resonance manifolds, which couple closed channels having both high and low principal quantum numbers. This sheds new light on the competition between direct and indirect DR pathways, and suggests the reason why previous theory underestimated the DR rate by an order of magnitude.Comment: Submitted to PR

    Between whores and heroes: Women, voyeurism and ambiguity in Holocaust Film

    Full text link

    Breast cancer diagnosis using a hybrid genetic algorithm for feature selection based on mutual information

    Get PDF
    Feature Selection is the process of selecting a subset of relevant features (i.e. predictors) for use in the construction of predictive models. This paper proposes a hybrid feature selection approach to breast cancer diagnosis which combines a Genetic Algorithm (GA) with Mutual Information (MI) for selecting the best combination of cancer predictors, with maximal discriminative capability. The selected features are then input into a classifier to predict whether a patient has breast cancer. Using a publicly available breast cancer dataset, experiments were performed to evaluate the performance of the Genetic Algorithm based on the Mutual Information approach with two different machine learning classifiers, namely the k-Nearest Neighbor (KNN), and Support vector machine (SVM), each tuned using different distance measures and kernel functions, respectively. The results revealed that the proposed hybrid approach is highly accurate for predicting breast cancer, and it is very promising for predicting other cancers using clinical data

    The role of human ankle plantar flexor muscle-tendon interaction and architecture in maximal vertical jumping examined in vivo

    Get PDF
    This is the final version. Available from Company of Biologists via the DOI in this record.Humans utilise elastic tendons of lower limb muscles to store and return energy during walking, running and jumping. Anuran and insect species use skeletal structures and/or dynamics in conjunction with similarly compliant structures to amplify muscle power output during jumping. We sought to examine whether human jumpers use similar mechanisms to aid elastic energy usage in the plantar flexor muscles during maximal vertical jumping. Ten male athletes performed maximal vertical squat jumps. Three-dimensional motion capture and a musculoskeletal model were used to determine lower limb kinematics that were combined with ground reaction force data in an inverse dynamics analysis. B-mode ultrasound imaging of the lateral gastrocnemius (GAS) and soleus (SOL) muscles was used to measure muscle fascicle lengths and pennation angles during jumping. Our results highlighted that both GAS and SOL utilised stretch and recoil of their series elastic elements (SEEs) in a catapult-like fashion, which likely serves to maximise ankle joint power. The resistance of supporting of body weight allowed initial stretch of both GAS and SOL SEEs. A proximal-to-distal sequence of joint moments and decreasing effective mechanical advantage early in the extension phase of the jumping movement were observed. This facilitated a further stretch of the SEE of the biarticular GAS and delayed recoil of the SOL SEE. However, effective mechanical advantage did not increase late in the jump to aid recoil of elastic tissues.D.J.F. is supported by a post-doctoral fellowship funded by the Australian Sports Commission

    Regression of murine lung tumors by the let-7 microRNA.

    Get PDF
    MicroRNAs (miRNAs) have recently emerged as an important new class of cellular regulators that control various cellular processes and are implicated in human diseases, including cancer. Here, we show that loss of let-7 function enhances lung tumor formation in vivo, strongly supporting the hypothesis that let-7 is a tumor suppressor. Moreover, we report that exogenous delivery of let-7 to established tumors in mouse models of non-small-cell lung cancer (NSCLC) significantly reduces the tumor burden. These results demonstrate the therapeutic potential of let-7 in NSCLC and point to miRNA replacement therapy as a promising approach in cancer treatment

    Benthic Carbon fixation and cycling in diffuse hydrothermal and background sediments in the Bransfield Strait, Antarctica

    Get PDF
    Sedimented hydrothermal vents are likely to be widespread compared to hard substrate hot vents. They host chemosynthetic microbial communities which fix inorganic carbon (C) at the seafloor, as well as a wide range of macroinfauna, including vent-obligate and background non-vent taxa. There are no previous direct observations of carbon cycling at a sedimented hydrothermal vent. We conducted 13C isotope tracing experiments at three sedimented sites in the Bransfield Strait, Antarctica, which showed different degrees of hydrothermalism. Two experimental treatments were applied, with 13C added as either algal detritus (photosynthetic C), or as bicarbonate (substrate for benthic C fixation). Algal 13C was taken up by both bacteria and metazoan macrofaunal, but its dominant fate was respiration, as observed at deeper and more food-limited sites elsewhere. Rates of 13C uptake and respiration suggested that the diffuse hydrothermal site was not the hot spot of benthic C cycling that we hypothesised it would be. Fixation of inorganic C into bacterial biomass was observed at all sites, and was measurable at two out of three sites. At all sites, newly fixed C was transferred to metazoan macrofauna. Fixation rates were relatively low compared with similar experiments elsewhere; thus, C fixed at the seafloor was a minor C source for the benthic ecosystem. However, as the greatest amount of benthic C fixation occurred at the “Off Vent” (non-hydrothermal) site (0.077±0.034 mg C m−2 fixed during 60 h), we suggest that benthic fixation of inorganic C is more widespread than previously thought, and warrants further study

    Thermal development of latent fingermarks on porous surfaces-Further observations and refinements

    Full text link
    In a further study of the thermal development of fingermarks on paper and similar surfaces, it is demonstrated that direct contact heating of the substrate using coated or ceramic surfaces at temperatures in excess of 230 °C produces results superior to those obtained using hot air. Fingermarks can also be developed in this way on other cellulose-based substrates such as wood and cotton fabric, though ridge detail is difficult to obtain in the latter case. Fluorescence spectroscopy indicates that the phenomena observed during the thermal development of fingermarks can be reproduced simply by heating untreated white copy paper or filter paper, or these papers treated with solutions of sodium chloride or alanine. There is no evidence to suggest that the observed fluorescence of fingermarks heated on paper is due to a reaction of fingermark constituents on or with the paper. Instead, we maintain that the ridge contrast observed first as fluorescence, and later as brown charring, is simply an acceleration of the thermal degradation of the paper. Thermal degradation of cellulose, a major constituent of paper and wood, is known to give rise to a fluorescent product if sufficient oxygen is available [1-5]. However, the absence of atmospheric oxygen has only a slight effect on the thermal development of fingermarks, indicating that there is sufficient oxygen already present in paper to allow the formation of the fluorescent and charred products. In a depletion study comparing thermal development of fingermarks on paper with development using ninhydrin, the thermal technique was found to be as sensitive as ninhydrin for six out of seven donors. When thermal development was used in sequence with ninhydrin and DFO, it was found that only fingermarks that had been developed to the fluorescent stage (a few seconds of heating) could subsequently be developed with the other reagents. In the reverse sequence, no useful further development was noted for fingermarks that were treated thermally after having been developed with ninhydrin or DFO. Aged fingermarks, including marks from 1-year-old university examination papers were successfully developed using the thermal technique. © 2010 Elsevier Ireland Ltd

    Is the biology of breast cancer changing? A study of hormone receptor status 1984-1986 and 1996-1997

    Get PDF
    Using archived tumours, those from 1984-1986 and 1996-1997 underwent immunohistochemistry for hormone receptors and grade analysis. A significant shift towards more ER-positive and low-grade disease was found; this appears to reflect screening practices, but could still influence survival
    • 

    corecore