19 research outputs found

    An in-home study of subjective response to simulated sonic booms

    Get PDF
    The proposed development of a second-generation supersonic commercial transport has resulted in increased research efforts to provide an environmentally acceptable aircraft. One of the environmental issues is the impact of sonic booms on people. Aircraft designers are attempting to design the transport to produce sonic boom signatures that will have minimum impact on the public. Current supersonic commercial aircraft produce an 'N-wave' sonic boom pressure signature that is considered unacceptable by the public. This has resulted in first-generation supersonic transports being banned from flying supersonically over land in the United States, a severe economic constraint. By tailoring aircraft volume and lift distributions, designers hope to produce sonic boom signatures having specific shapes other than 'N-wave' that may be more acceptable to the public and could possibly permit overland supersonic flight. As part of the effort to develop a second-generation supersonic commercial transport, Langley Research Center is conducting research to study people's subjective response to sonic booms. As part of that research, a system was developed for performing studies of the subjective response of people to the occurrence of simulated sonic booms in their homes. The In-Home Noise Generation/Response System (IHONORS) provides a degree of situational realism not available in the laboratory and a degree of control over the noise exposure not found in community surveys. The computer-controlled audio system generates the simulated sonic booms, measures the noise levels, and records the subjects' rating and can be placed and operated in individuals' homes for extended periods of time. The system was used to conduct an in-home study of subjective response to simulated sonic booms. The primary objective of the study was to determine the effect on annoyance of the number of sonic boom occurrences in a realistic environment

    System Oriented Runway Management: A Research Update

    Get PDF
    The runway configuration used by an airport has significant implications with respect to its capacity and ability to effectively manage surface and airborne traffic. Aircraft operators rely on runway configuration information because it can significantly affect an airline's operations and planning of their resources. Current practices in runway management are limited by a relatively short time horizon for reliable weather information and little assistance from automation. Wind velocity is the primary consideration when selecting a runway configuration; however when winds are below a defined threshold, discretion may be used to determine the configuration. Other considerations relevant to runway configuration selection include airport operator constraints, weather conditions (other than winds) traffic demand, user preferences, surface congestion, and navigational system outages. The future offers an increasingly complex landscape for the runway management process. Concepts and technologies that hold the potential for capacity and efficiency increases for both operations on the airport surface and in terminal and enroute airspace are currently under investigation. Complementary advances in runway management are required if capacity and efficiency increases in those areas are to be realized. The System Oriented Runway Management (SORM) concept has been developed to address this critical part of the traffic flow process. The SORM concept was developed to address all aspects of runway management for airports of varying sizes and to accommodate a myriad of traffic mixes. SORM, to date, addresses the single airport environment; however, the longer term vision is to incorporate capabilities for multiple airport (Metroplex) operations as well as to accommodate advances in capabilities resulting from ongoing research. This paper provides an update of research supporting the SORM concept including the following: a concept of overview, results of a TRCM simulation, single airport and Metroplex modeling effort and a benefits assessment

    Progress Toward Future Runway Management

    Get PDF
    The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making

    Decision Support Methods and Tools

    Get PDF
    This paper is one of a set of papers, developed simultaneously and presented within a single conference session, that are intended to highlight systems analysis and design capabilities within the Systems Analysis and Concepts Directorate (SACD) of the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). This paper focuses on the specific capabilities of uncertainty/risk analysis, quantification, propagation, decomposition, and management, robust/reliability design methods, and extensions of these capabilities into decision analysis methods within SACD. These disciplines are discussed together herein under the name of Decision Support Methods and Tools. Several examples are discussed which highlight the application of these methods within current or recent aerospace research at the NASA LaRC. Where applicable, commercially available, or government developed software tools are also discusse

    Multi-proxy record of Holocene paleoenvironmental conditions from Yellowstone Lake, Wyoming, USA

    Get PDF
    A composite 11.82 m-long (9876e-67 cal yr BP) sediment record from Yellowstone Lake, Wyoming was analyzed using a robust set of biological and geochemical proxies to investigate the paleoenvironmental evolution of the lake and its catchment in response to long-term climate forcing. Oxygen isotopes from diatom frustules were analyzed to reconstruct Holocene climate changes, and pollen, charcoal, diatom assemblages, and biogenic silica provided information on terrestrial and limnological responses. The long-term trends recorded in the terrestrial and limnic ecosystems over the last 9800 years reflect the influence of changes in the amplification of the seasonal cycle of insolation on regional climate. The early Holocene (9880e6700 cal yr BP) summer insolation maximum and strengthening of the northeastern Pacific subtropical high-pressure system created warm dry conditions and decreasing summer insolation in the middle (6700e3000 cal yr BP) and late (3000e-67 cal yr BP) Holocene resulted in progressively cooler, wetter conditions. Submillenial climate variation is also apparent, with a wetter/cooler interval between 7000 and 6800 cal yr BP and warmer and/or drier conditions from 4500 to 3000 cal yr BP and at ca. 1100 cal yr BP. These data show that the Yellowstone Lake basin had a climate history typical of a summer-dry region, which helps to better define the spatial variability of Holocene climate in the Greater Yellowstone Ecosystem

    The dynamic floor of Yellowstone Lake, Wyoming, USA: The last 14 k.y. of hydrothermal explosions, venting, doming, and faulting

    Get PDF
    Hydrothermal explosions are significant potential hazards in Yellowstone National Park, Wyoming, USA. The northern Yellowstone Lake area hosts the three largest hydrothermal explosion craters known on Earth empowered by the highest heat flow values in Yellowstone and active seismicity and deformation. Geological and geochemical studies of eighteen sublacustrine cores provide the first detailed synthesis of the age, sedimentary facies, and origin of multiple hydrothermal explosion deposits.New tephrochronology and radiocarbon results provide a four-dimensional view of recent geologic activity since recession at ca. 15–14.5 ka of the \u3e1-km-thick Pinedale ice sheet. The sedimentary record in Yellowstone Lake contains multiple hydrothermal explosion deposits ranging in age from ca. 13 ka to ∼1860 CE. Hydrothermal explosions require a sudden drop in pressure resulting in rapid expansion of high-temperature fluids causing fragmentation, ejection, and crater formation; explosions may be initiated by seismicity, faulting, deformation, or rapid lake-level changes. Fallout and transport of ejecta produces distinct facies of subaqueous hydrothermal explosion deposits. Yellowstone hydrothermal systems are characterized by alkaline-Cl and/or vapor-dominated fluids that, respectively, produce alteration dominated by silica-smectite-chlorite or by kaolinite. Alkaline-Cl liquids flash to steam during hydrothermal explosions, producing much more energetic events than simple vapor expansion in vapor-dominated systems. Two enormous explosion events in Yellowstone Lake were triggered quite differently: Elliott’s Crater explosion resulted from a major seismic event (8 ka) that ruptured an impervious hydrothermal dome, whereas the Mary Bay explosion (13 ka) was triggered by a sudden drop in lake level stimulated by a seismic event, tsunami, and outlet channel erosion

    Noise Transmission Characteristics of Damped Plexiglas Windows

    No full text
    Most general aviation aircraft utilize single layer plexiglas material for the windshield and side windows. Adding noise control treatments to transparent panels is a challenging problem. In this paper, damped plexiglas windows are evaluated for replacement of conventional windows in general aviation aircraft to reduce the structure-borne and airborne noise transmitted into the interior. In contrast to conventional solid windows, the damped plexiglas window panels are fabricated using two or three layers of plexiglas with transparent viscoelastic damping material sandwiched between the layers. Results from acoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission (SALT) facility are used to compare different designs of the damped plexiglas panels with solid windows of the same nominal thickness. Comparisons of the solid and damped plexiglas panels show reductions in the radiated sound power of up to 8 dB at low frequency resonances and as large as 4.5 dB over a 4000 Hz bandwidth. The weight of the viscoelastic treatment was approximately 1% of the panel mass. Preliminary FEM/BEM modeling shows good agreement with experimental results for radiated sound power

    last name: Shepherd HUMAN RESPONSE TO SONIC BOOMS-RECENT NASA RESEARCH

    No full text
    The proposed development of a second-generation supersonic commercial transport has resulted in renewed sonic boom research. Aircraft configurations are being designed to reduce the impact of sonic booms by generating sonic boom signatures which have specific shapes other than N-waves and which may be more acceptable to the public
    corecore