1,174 research outputs found
Exploring extensions to the standard cosmological model and the impact of baryons on small scales
It has been claimed that the standard model of cosmology (ΛCDM) cannot easily account for a number of observations on relatively small scales, motivating extensions to the standard model. Here, we introduce a new suite of cosmological simulations that systematically explores three plausible extensions: warm dark matter, self-interacting dark matter, and a running of the scalar spectral index of density fluctuations. Current observational constraints are used to specify the additional parameters that come with these extensions. We examine a large range of observable metrics on small scales, including the halo mass function, density, and circular velocity profiles, the abundance of satellite subhaloes, and halo concentrations. For any given metric, significant degeneracies can be present between the extensions. In detail, however, the different extensions have quantitatively distinct mass and radial dependencies, suggesting that a multiprobe approach over a range of scales can be used to break the degeneracies. We also demonstrate that the relative effects on the radial density profiles in the different extensions (compared to the standard model) are converged down to significantly smaller radii than are the absolute profiles. We compare the derived cosmological trends with the impact of baryonic physics using the EAGLE and ARTEMIS simulations. Significant degeneracies are also present between baryonic physics and cosmological variations (with both having similar magnitude effects on some observables). Given the inherent uncertainties both in the modelling of galaxy formation physics and extensions to ΛCDM, a systematic and simultaneous exploration of both is strongly warranted
Isotopic Constraints on the Chemical Evolution of Geothermal Fluids, Long Valley, CA
Abstract A spatial survey of the chemical and isotopic composition of fluids from the Long Valley hydrothermal system was conducted. Starting at the presumed hydrothermal upwelling zone in the west moat of the caldera, samples were collected from the Casa Diablo geothermal field and a series of monitoring wells defining a nearly linear, ~14 km long, west-to-east trend along the proposed fluid flow path Introduction The efficiency of heat extraction from geothermal reservoir rocks is limited by chemical processes and the physical characteristics of the reservoir. Specifically, mineral dissolution and precipitation and the geometry of heat and mass exchange between fluids and the reservoir lithologies of fractured dominated systems define the long term efficiency of heat extraction but are difficult to quantify and therefore predict. Increased knowledge about the water-rock exchange in geothermal systems and the size and spacing of the major fluid transporting fractures would be valuable information that impact decisions guiding the management of natural and enhanced geothermal systems
Uranium isotope fractionation by abiotic reductive precipitation
Significant uranium (U) isotope fractionation has been observed during abiotic reduction of aqueous U, counter to the expectation that uranium isotopes are only fractionated by bioassociated enzymatic reduction. In our experiments, aqueous U is removed from solution by reductive precipitation onto the surfaces of synthetic iron monosulfide. The magnitude of uranium isotopic fractionation increases with decreasing aqueous U removal rate and with increasing amounts of neutrally charged aqueous Ca-U-CO3 species. Our discovery means that abiotic U isotope fractionation likely occurs in any reducing environment with aqueous Ca ≥ 1 mM, and that the magnitude of isotopic fractionation changes in response to changes in aqueous major ion concentrations that affect U speciation. Our results have implications for the study of anoxia in the ancient oceans and other environments
Simplifying External Load Data in NCAA Division-I Men\u27s Basketball Competitions: A Principal Component Analysis
The primary purpose was to simplify external load data obtained during Division-I (DI) basketball competitions via principal component analysis (PCA). A secondary purpose was to determine if the PCA results were sensitive to load demands of different positional groups (POS). Data comprised 229 observations obtained from 10 men\u27s basketball athletes participating in NCAA DI competitions. Each athlete donned an inertial measurement unit that was affixed to the same location on their shorts prior to competition. The PCA revealed two factors that possessed eigenvalues \u3e1.0 and explained 81.42% of the total variance. The first factor comprised total decelerations (totDEC, 0.94), average speed (avgSPD, 0.90), total accelerations (totACC, 0.85), total mechanical load (totMECH, 0.84), and total jump load (totJUMP, 0.78). Maximum speed (maxSPD, 0.94) was the lone contributor to the second factor. Based on the PCA, external load variables were included in a multinomial logistic regression that predicted POS (Overall model, p \u3c 0.0001; AUCcenters = 0.93, AUCguards = 0.88, AUCforwards = 0.80), but only maxSPD, totDEC, totJUMP, and totMECH were significant contributors to the model\u27s success (p \u3c 0.0001 for each). Even with the high significance, the model still had some issues differentiating between guards and forwards, as in-game demands often overlap between the two positions. Nevertheless, the PCA was effective at simplifying a large external load dataset collected on NCAA DI men\u27s basketball athletes. These data revealed that maxSPD, totDEC, totJUMP, and totMECH were the most sensitive to positional differences during competitions. To best characterize competition demands, such variables may be used to individualize training and recovery regimens most effectively
Se Isotopes as Groundwater Redox Indicators:Detecting Natural Attenuation of Se at an in Situ Recovery U Mine
One
of the major ecological concerns associated with the in situ
recovery (ISR) of uranium (U) is the environmental release of soluble,
toxic selenium (Se) oxyanions generated by mining. Post-mining natural
attenuation by the residual reductants in the ore body and reduced
down-gradient sediments should mitigate the risk of Se contamination
in groundwater. In this work, we investigate the Se concentrations
and Se isotope systematics of groundwater and of U ore bearing sediments
from an ISR site at Rosita, TX, USA. Our results show that selenate
(Se(VI)) is the dominant Se species in Rosita groundwater, and while
several up-gradient wells have elevated Se(VI), the majority of the
ore zone and down-gradient wells have little or no Se oxyanions. In
addition, the δ<sup>82</sup>Se<sub>VI</sub> of Rosita groundwater
is generally elevated relative to the U ore up to +6.14‰, with
the most enriched values observed in the ore-zone wells. Increasing
δ<sup>82</sup>Se with decreasing Se(VI) conforms to a Rayleigh
type distillation model with an ε of −2.25‰ ±
0.61‰, suggesting natural Se(VI) reduction occurring along
the hydraulic gradient at the Rosita ISR site. Furthermore, our results
show that Se isotopes are excellent sensors for detecting and monitoring
post-mining natural attenuation of Se oxyanions at ISR sites
ARTEMIS emulator: exploring the effect of cosmology and galaxy formation physics on Milky Way-mass haloes and their satellites
We present the new ARTEMIS emulator suite of high-resolution (baryon mass of 2.23 × 104h−1 M⊙) zoom-in simulations of Milky Way-mass systems. Here, three haloes from the original ARTEMIS sample have been rerun multiple times, systematically varying parameters for the stellar feedback model, the density threshold for star formation, the reionization redshift, and the assumed warm dark matter (WDM) particle mass (assuming a thermal relic). From these simulations, emulators are trained for a wide range of statistics that allow for fast predictions at combinations of parameters not originally sampled, running in ∼1 ms (a factor of ∼1011 faster than the simulations). In this paper, we explore the dependence of the central haloes’ stellar mass on the varied parameters, finding the stellar feedback parameters to be the most important. When constraining the parameters to match the present-day stellar mass halo mass relation inferred from abundance matching we find that there is a strong degeneracy in the stellar feedback parameters, corresponding to a freedom in formation time of the stellar component for a fixed halo assembly history. We additionally explore the dependence of the satellite stellar mass function, where it is found that variations in stellar feedback, the reionization redshift, and the WDM mass all have a significant effect. The presented emulators are a powerful tool which allows for fundamentally new ways of analysing and interpreting cosmological hydrodynamic simulations. Crucially, allowing their free (subgrid) parameters to be varied and marginalized, leading to more robust constraints and predictions
Pb Isotopes as an Indicator of the Asian Contribution to Particulate Air Pollution in Urban California
During the last two decades, expanding industrial activity in east Asia has led to increased production of airborne pollutants that can be transported to North America. Previous efforts to detect this trans-Pacific pollution have relied upon remote sensing and remote sample locations. We tested whether Pb isotope ratios in airborne particles can be used to directly evaluate the Asian contribution to airborne particles of anthropogenic origin in western North America, using a time series of samples from a pair of sites upwind and downwind of the San Francisco Bay Area. Our results for airborne Pb at these sites indicate a median value of 29 Asian origin, based on mixing relations between distinct regional sample groups. This trans-Pacific Pb is present in small quantities but serves as a tracer for airborne particles within the growing Asian industrial plume. We then applied this analysis to archived samples from urban sites in central California. Taken together, our results suggest that the analysis of Pb isotopes can reveal the distribution of airborne particles affected by Asian industrial pollution at urban sites in northern California. Under suitable circumstances, this analysis can improve understanding of the global transport of pollution, independent of transport models
Why growth equals power - and why it shouldn't : constructing visions of China
When discussing the success of China's transition from socialism, there is a tendency to focus on growth figures as an indication of performance. Whilst these figures are
indeed impressive, we should not confuse growth with development and assume that the former necessarily automatically generates the latter. Much has been done to
reduce poverty in China, but the task is not as complete as some observers would suggest; particularly in terms of access to health, education and welfare, and also in
dealing with relative (rather than absolute) depravation and poverty. Visions of China have been constructed that exaggerate Chinese development and power in the global
system partly to serve political interests, but partly due to the failure to consider the relationship between growth and development, partly due to the failure to disaggregate
who gets what in China, and partly due to the persistence of inter-national conceptions of globalised production, trade, and financial flows
Honey bee foraging distance depends on month and forage type
To investigate the distances at which honey bee foragers collect nectar and pollen, we analysed 5,484 decoded waggle dances made to natural forage sites to determine monthly foraging distance for each forage type. Firstly, we found significantly fewer overall dances made for pollen (16.8 %) than for non-pollen, presumably nectar (83.2 %; P < 2.2 × 10−23). When we analysed distance against month and forage type, there was a significant interaction between the two factors, which demonstrates that in some months, one forage type is collected at farther distances, but this would reverse in other months. Overall, these data suggest that distance, as a proxy for forage availability, is not significantly and consistently driven by need for one type of forage over the other
Sr and O isotopes in western Aleutian seafloor lavas: Implications for the source of fluids and trace element character of arc volcanic rocks
Highlights
• An eclogite-melt component (slab melt) is present in volcanic rocks throughout the Aleutian arc.
• Fluids that drive slab melting are produced by dehydration of serpentinite in the subducting plate.
• Slab melting encompasses a large section of mafic oceanic crust unaffected by seawater alteration.
• The subducting plate beneath the Aleutian arc is hotter than indicated by most thermal models.
Abstract
High Mg# andesites and dacites (Mg# = molar Mg/Mg + Fe) from western Aleutian seafloor volcanoes carry high concentrations of Sr (>1000 ppm) that is unradiogenic (87Sr/86Sr 0.7030). Data patterns in plots of 87Sr/86Sr vs Y/Sr and Nd/Sr imply the existence of an eclogite-melt source component – formed by partial melting of MORB eclogite in the subducting Pacific Plate – which is most clearly expressed in the compositions of western Aleutian andesites and dacites (Nd/Sr and Y/Sr 2 km below the paleo-seafloor. Oxygen isotopes in western Aleutian seafloor lavas, which fall within a narrow range of MORB-like values (δ18O=5.1–5.7δ18O=5.1–5.7), are also consistent with this model. These results indicate that the subducting Pacific lithosphere beneath the Aleutian arc is significantly hotter than indicated my most thermal models
- …