11,305 research outputs found

    Yield instability of winter oilseed rape modulated by early winter temperature

    Get PDF
    Yield stability is a major problem in oilseed rape with inter-annual variation accounting for between 30–50% of the crop value among the major global rapeseed producers. The United Kingdom has persistent problems with yield instability, but the underlying causes remain unclear. We tested whether temperature plays a role in UK winter oilseed rape (WOSR) yield variation through analysis of aggregated country-wide on-farm yield data and in annual Recommended List variety trial data run by the UK Agriculture and Horticulture Development Board (AHDB). Our analyses of the two independent datasets both show that mean temperature in early winter is strongly and uniquely linked to variation in WOSR yield, with a rise in mean temperature of 1 °C associated with an average reduction of 113 (+−21) kg ha−1 in yield. We propose that understanding the mechanism by which early winter chilling affects WOSR yield will enable the breeding of varieties with a more stable and resilient yield in Western Europe as climatic variation increases

    Accurate exchange-correlation energies for the warm dense electron gas

    Get PDF
    Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average NN-body density matrices for uniform electron gas systems of up to 10124^{124} matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the kk-space configuration path-integral formalism disagree by up to \sim1010\% at certain reduced temperatures T/TF0.5T/T_F \le 0.5 and densities rs1r_s \le 1. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for T/TF1T/T_F \ge 1 and rs2r_s \le 2.Comment: Accepted version: added free energy data and restructured text. Now includes supplementary materia

    Positivity of Entropy in the Semi-Classical Theory of Black Holes and Radiation

    Get PDF
    Quantum stress-energy tensors of fields renormalized on a Schwarzschild background violate the classical energy conditions near the black hole. Nevertheless, the associated equilibrium thermodynamical entropy ΔS\Delta S by which such fields augment the usual black hole entropy is found to be positive. More precisely, the derivative of ΔS\Delta S with respect to radius, at fixed black hole mass, is found to vanish at the horizon for {\it all} regular renormalized stress-energy quantum tensors. For the cases of conformal scalar fields and U(1) gauge fields, the corresponding second derivative is positive, indicating that ΔS\Delta S has a local minimum there. Explicit calculation shows that indeed ΔS\Delta S increases monotonically for increasing radius and is positive. (The same conclusions hold for a massless spin 1/2 field, but the accuracy of the stress-energy tensor we employ has not been confirmed, in contrast to the scalar and vector cases). None of these results would hold if the back-reaction of the radiation on the spacetime geometry were ignored; consequently, one must regard ΔS\Delta S as arising from both the radiation fields and their effects on the gravitational field. The back-reaction, no matter how "small",Comment: 19 pages, RevTe

    Photon Rates for Heavy-Ion Collisions from Hidden Local Symmetry

    Get PDF
    We study photon production from the hidden local symmetry approach that includes pions, rho and a1 mesons and compute the corresponding photon emission rates from a hadronic gas in thermal equilibrium. Together with experimental radiative decay widths of the background, these rates are used in a relativistic transport model to calculate single photon spectra in heavy-ion collisions at SPS energies. We then employ this effective theory to test three scenarios for the chiral phase transition in high-temperature nuclear matter including decreasing vector meson masses. Although all calculations respect the upper bound set by the WA80 Collaboration, we find the scenarios could be distinguished with more detailed data.Comment: 12 pages, 12 Postscript figures; discussion of thermal equilibrium rates expanded, minor corrections to text and graph

    The Swift-UVOT ultraviolet and visible grism calibration

    Get PDF
    We present the calibration of the Swift UVOT grisms, of which there are two, providing low-resolution field spectroscopy in the ultraviolet and optical bands respectively. The UV grism covers the range 1700-5000 Angstrom with a spectral resolution of 75 at 2600 Angstrom for source magnitudes of u=10-16 mag, while the visible grism covers the range 2850-6600 Angstrom with a spectral resolution of 100 at 4000 Angstrom for source magnitudes of b=12-17 mag. This calibration extends over all detector positions, for all modes used during operations. The wavelength accuracy (1-sigma) is 9 Angstrom in the UV grism clocked mode, 17 Angstrom in the UV grism nominal mode and 22 Angstrom in the visible grism. The range below 2740 Angstrom in the UV grism and 5200 Angstrom in the visible grism never suffers from overlapping by higher spectral orders. The flux calibration of the grisms includes a correction we developed for coincidence loss in the detector. The error in the coincidence loss correction is less than 20%. The position of the spectrum on the detector only affects the effective area (sensitivity) by a few percent in the nominal modes, but varies substantially in the clocked modes. The error in the effective area is from 9% in the UV grism clocked mode to 15% in the visible grism clocked mode .Comment: 27 pages, 31 figures; MNRAS accepted 23 February 201

    New Constraints on the Lyman Continuum Escape Fraction at z~1.3

    Get PDF
    We examine deep far-ultraviolet (1600 Angstrom) imaging of the Hubble Deep Field-North (HDFN) and the Hubble Ultra Deep Field (HUDF) to search for leaking Lyman continuum radiation from starburst galaxies at z~1.3. There are 21 (primarily sub-L*) galaxies with spectroscopic redshifts between 1.1<z<1.5 and none are detected in the far-UV. We fit stellar population templates to the galaxies' optical/near-infrared SEDs to determine the starburst age and level of dust attenuation, giving an accurate estimate of the intrinsic Lyman continuum ratio, f_1500/f_700, and allowing a conversion from f_700 limits to relative escape fractions. We show that previous high-redshift studies may have underestimated the amplitude of the Lyman Break, and thus the relative escape fraction, by a factor of ~2. Once the starburst age and intergalactic HI absorption are accounted for, 18 galaxies in our sample have limits to the relative escape fraction, f_esc,rel < 1.0 with some limits as low as f_esc,rel < 0.10 and a stacked limit of f_esc,rel < 0.08. This demonstrates, for the first time, that most sub-L* galaxies at high redshift do not have large escape fractions. When combined with a similar study of more luminous galaxies at the same redshift we show that, if all star-forming galaxies at z~1 have similar relative escape fractions, the value must be less than 0.14 (3 sigma). We also show that less than 20% (3 sigma) of star-forming galaxies at z~1 have relative escape fractions near unity. These limits contrast with the large escape fractions found at z~3 and suggest that the average escape fraction has decreased between z~3 and z~1. (Abridged)Comment: Accepted for publication in ApJ. aastex format. 39 pages, 11 figure
    corecore