6,694 research outputs found

    Layer by layer generation of cluster states

    Full text link
    Cluster states can be used to perform measurement-based quantum computation. The cluster state is a useful resource, because once it has been generated only local operations and measurements are needed to perform universal quantum computation. In this paper, we explore techniques for quickly and deterministically building a cluster state. In particular we consider generating cluster states on a qubus quantum computer, a computational architecture which uses a continuous variable ancilla to generate interactions between qubits. We explore several techniques for building the cluster, with the number of operations required depending on whether we allow the ability to destroy previously created controlled-phase links between qubits. In the case where we can not destroy these links, we show how to create an n x m cluster using just 3nm -2n -3m/2 + 3 operations. This gives more than a factor of 2 saving over a naive method. Further savings can be obtained if we include the ability to destroy links, in which case we only need (8nm-4n-4m-8)/3 operations. Unfortunately the latter scheme is more complicated so choosing the correct order to interact the qubits is considerably more difficult. A half way scheme, that keeps a modular generation but saves additional operations over never destroying links requires only 3nm-2n-2m+4 operations. The first scheme and the last scheme are the most practical for building a cluster state because they split up the generation into the repetition of simple sections.Comment: 16 pages, 11 figure

    The clinical effectiveness of different parenting programmes for children with conduct problems : a systematic review of randomised controlled trials

    Get PDF
    Background Conduct problems are common, disabling and costly. The prognosis for children with conduct problems is poor, with outcomes in adulthood including criminal behaviour, alcoholism, drug abuse, domestic violence, child abuse and a range of psychiatric disorders. There has been a rapid expansion of group based parent-training programmes for the treatment of children with conduct problems in a number of countries over the past 10 years. Existing reviews of parent training have methodological limitations such as inclusion of non-randomised studies, the absence of investigation for heterogeneity prior to meta-analysis or failure to report confidence intervals. The objective of the current study was to systematically review randomised controlled trials of parenting programmes for the treatment of children with conduct problems. Methods Standard systematic review methods were followed including duplicate inclusion decisions, data extraction and quality assessment. Twenty electronic databases from the fields of medicine, psychology, social science and education were comprehensively searched for RCTs and systematic reviews to February 2006. Inclusion criteria were: randomised controlled trial; of structured, repeatable parenting programmes; for parents/carers of children up to the age of 18 with a conduct problem; and at least one measure of child behaviour. Meta-analysis and qualitative synthesis were used to summarise included studies. Results 57 RCTs were included. Studies were small with an average group size of 21. Meta-analyses using both parent (SMD -0.67; 95% CI: -0.91, -0.42) and independent (SMD -0.44; 95% CI: -0.66, -0.23) reports of outcome showed significant differences favouring the intervention group. There was insufficient evidence to determine the relative effectiveness of different approaches to delivering parenting programmes. Conclusion Parenting programmes are an effective treatment for children with conduct problems. The relative effectiveness of different parenting programmes requires further research

    Sociology of low expectations: Recalibration as innovation work in biomedicine

    Get PDF
    "This article is distributed under the terms of the Creative Commons Attribution 3.0 License (http://www.creativecommons.org/licenses/by/3.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm). "Social scientists have drawn attention to the role of hype and optimistic visions of the future in providing momentum to biomedical innovation projects by encouraging innovation alliances. In this article, we show how less optimistic, uncertain, and modest visions of the future can also provide innovation projects with momentum. Scholars have highlighted the need for clinicians to carefully manage the expectations of their prospective patients. Using the example of a pioneering clinical team providing deep brain stimulation to children and young people with movement disorders, we show how clinicians confront this requirement by drawing on their professional knowledge and clinical expertise to construct visions of the future with their prospective patients; visions which are personalized, modest, and tainted with uncertainty. We refer to this vision-constructing work as recalibration, and we argue that recalibration enables clinicians to manage the tension between the highly optimistic and hyped visions of the future that surround novel biomedical interventions, and the exigencies of delivering those interventions in a clinical setting. Drawing on work from science and technology studies, we suggest that recalibration enrolls patients in an innovation alliance by creating a shared understanding of how the “effectiveness” of an innovation shall be judged.This project was funded by the Wellcome Trust (Wellcome Trust Biomedical Strategic Award 086034)

    Palladium(II)-Catalysed Aminocarbonylation of Terminal Alkynes for the Synthesis of 2-Ynamides: Addressing the Challenges of Solvents and Gas Mixtures

    Get PDF
    2‐Ynamides can be synthesised through Pd(II) catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2‐ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu(4)]I allows the utilisation of the industrially recommended solvent ethyl acetate. O(2) can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O(2) concentrations

    The Imaginary Part of Nucleon Self-energy in hot nuclear matter

    Get PDF
    A semiphenomenological approach to the nucleon self-energy in nuclear matter at finite temperatures is followed. It combines elements of Thermo Field Dynamics for the treatment of finite temperature with a model for the self-energy, which evaluates the second order diagrams taking the needed dynamics of the NN interaction from experiment. The approach proved to be accurate at zero temperature to reproduce Im(Sigma) and other properties of nucleons in matter. In the present case we apply it to determine Im(Sigma) at finite temperatures. An effective NN cross section is deduced which can be easily used in analyses of heavy ion reactions.Comment: 15 pages, 6 postscripts figures, to be published in Nucl. Phys.

    Disformal dark energy at colliders

    Get PDF
    Disformally coupled, light scalar fields arise in many of the theories of dark energy and modified gravity that attempt to explain the accelerated expansion of the Universe. They have proved difficult to constrain with precision tests of gravity because they do not give rise to fifth forces around static nonrelativistic sources. However, because the scalar field couples derivatively to standard model matter, measurements at high-energy particle colliders offer an effective way to constrain and potentially detect a disformally coupled scalar field. Here we derive new constraints on the strength of the disformal coupling from LHC run 1 data and provide a forecast for the improvement of these constraints from run 2. We additionally comment on the running of disformal and standard model couplings in this scenario under the renormalization group flow

    Surface, but Not Age, Impacts Lower Limb Joint Work during Walking and Stair Ascent

    Get PDF
    Older adults often suffer an accidental fall when navigating challenging surfaces during common locomotor tasks, such as walking and ascending stairs. This study examined the effect of slick and uneven surfaces on lower limb joint work in older and younger adults while walking and ascending stairs. Fifteen young (18–25 years) and 12 older (\u3e65 years) adults had stance phase positive limb and joint work quantified during walking and stair ascent tasks on a normal, slick, and uneven surface, which was then submitted to a two-way mixed model ANOVA for analysis. The stair ascent required greater limb, and hip, knee, and ankle work than walking (all p \u3c 0.001), with participants producing greater hip and knee work during both the walk and stair ascent (both p \u3c 0.001). Surface, but not age, impacted positive limb work. Participants increased limb (p \u3c 0.001), hip (p = 0.010), and knee (p \u3c 0.001) positive work when walking over the challenging surfaces, and increased hip (p = 0.015), knee (p \u3c 0.001), and ankle (p = 0.010) work when ascending stairs with challenging surfaces. Traversing a challenging surface during both walking and stair ascent tasks required greater work production from the large proximal hip and knee musculature, which may increase the likelihood of an accidental fall in older adults

    Surface, but Not Age Impact Lower Limb Joint Work During Walk and Stair Ascent

    Get PDF
    During common locomotor activates, such as walk or stair negotiation, older adults exhibit unfavorable lower limb biomechanical changes, including diminished joint torque and power, and proximal mechanical work redistribution that may increase their fall risk. To investigate age-related differences in lower limb work, twelve young (18 to 25 years) and 12 older (\u3e 65 years) adults performed a walk and stair ascent task on a normal, slick, and uneven surface. For each walk and stair ascent trial, synchronous 3D marker trajectories and GRF data were collected. Stance phase positive limb and joint work, and relative joint work were submitted to statistical analysis. Ascending stairs required more positive work than the walk, particularly from the knee, which may increase fall risk. Yet, both walking and ascending stairs over a challenging surface required more, proximally distributed work

    Surface, but Not Age Impact Lower Limb Joint Work During Walk and Stair Ascent

    Get PDF
    During common locomotor activates, such as walk or stair negotiation, older adults exhibit unfavorable lower limb biomechanical changes, including diminished joint torque and power, and proximal mechanical work redistribution that may increase their fall risk. Twelve young (18 to 25 years) and 12 older (\u3e 65 years) adults performed a walk and stair ascent task on a normal, slick, and uneven surface. For each walk and stair ascent trial, synchronous 3D marker trajectories and GRF data were collected. Stance phase positive limb and joint work, and relative joint work were submitted to statistical analysis. Ascending stairs required more positive work than the walk, particularly from the knee, which may increase fall risk. Yet, both walking and ascending stairs over a challenging surface required more, proximally distributed work
    corecore