207 research outputs found

    Emotion Recognition and Traumatic Brain Injury

    Get PDF
    Emotion recognition through facial expression plays a critical role in communication.  Review of studies investigating individuals with TBI and emotion recognition indicates significantly poorer performance compared to controls. The purpose of the study was to determine the effects of different media presentation on emotion recognition in individuals with TBI, and if results differ depending on severity of TBI.  Adults with and without TBI participated in the study and were assessed using the TASIT and the FEEST. Preliminary results indicate that emotion recognition abilities greatly differ between mild and severe and participants performed better with static presentation compared to dynamic presentation

    Education Policy is Health Policy

    Get PDF
    Capstone presentation for the University of Richmond SSIR (Sophomore Scholars in Residence) Program.https://scholarship.richmond.edu/ssir-presentations-2017/1000/thumbnail.jp

    Skunk River Review 2015-2016

    Get PDF
    https://openspace.dmacc.edu/skunkriver/1024/thumbnail.jp

    Liquid marbles: principles and applications

    Get PDF
    The ability of particles to adhere to a fluid–fluid interface can stabilize the formation of an emulsion. When the encapsulated fluid is a liquid and the fluid in which it is immersed is air, the object formed is called a “Liquid Marble”. Here we discuss how liquid marbles can be created, their fundamental properties and their transport and potential uses. We show how they arise naturally as an insect waste disposal system, from impact of droplets on powders and on hydrophobic soil, and in the mixing of particulate containing liquids. Our principal aim is to review research on macroscopic single marbles and their potential uses in sensors and droplet microfluidics. However, we also illustrate the similarity between liquid marbles, Pickering emulsions and “Dry Water”, and the potential application of assemblies of liquid marbles within cosmetics and pharmaceutical formulations. Finally, we discuss how modifying the surface structure of particles and providing heterogeneous surface chemistry on particles (e.g. Janus particles) might provide new types of liquid marbles and applications

    Mechanical durability of superhydrophobic surfaces: the role of surface modification technologies

    Get PDF
    Various surface modification technologies have been used to develop superhydrophobic surface, however their durability has been recognized as the major obstacle for the real applications. Here a quantitative investigation was conducted to evaluate the effects of different surface modification methods on the surfaces’ mechanical durability. The superhydrophobic surfaces were prepared by the combination of two surface roughing methods (etching and sandblasting) with chemical modifications with four low surface energy materials: silica sol (SS), octadecanoic acid (OA), heptadecafluoro-1,1,2,2-tetrahydrodecyltrichlorosilane (HDFS) and hexadecyltriethoxysilane (HTS). XPS was used to analyze the elements composition and AFM was used to measure the roughness of the surfaces. The durability of these surfaces was tested by a sandpaper abrasion experiment. The collective results showed that the low surface energy materials had significant effects on the surface roughness, which would then play an important role in the durability of these rough surfaces. The SS modified rough surfaces possessed higher roughness and better durability than the surfaces modified by other three low surface energy materials. SS modified rough surfaces could bear 60 cycles of abrasion with 10 g weights on 1500 CW sandpaper

    Pharmacodynamic Modeling of Anti-Cancer Activity of Tetraiodothyroacetic Acid in a Perfused Cell Culture System

    Get PDF
    Unmodified or as a poly[lactide-co-glycolide] nanoparticle, tetraiodothyroacetic acid (tetrac) acts at the integrin αvβ3 receptor on human cancer cells to inhibit tumor cell proliferation and xenograft growth. To study in vitro the pharmacodynamics of tetrac formulations in the absence of and in conjunction with other chemotherapeutic agents, we developed a perfusion bellows cell culture system. Cells were grown on polymer flakes and exposed to various concentrations of tetrac, nano-tetrac, resveratrol, cetuximab, or a combination for up to 18 days. Cells were harvested and counted every one or two days. Both NONMEM VI and the exact Monte Carlo parametric expectation maximization algorithm in S-ADAPT were utilized for mathematical modeling. Unmodified tetrac inhibited the proliferation of cancer cells and did so with differing potency in different cell lines. The developed mechanism-based model included two effects of tetrac on different parts of the cell cycle which could be distinguished. For human breast cancer cells, modeling suggested a higher sensitivity (lower IC50) to the effect on success rate of replication than the effect on rate of growth, whereas the capacity (Imax) was larger for the effect on growth rate. Nanoparticulate tetrac (nano-tetrac), which does not enter into cells, had a higher potency and a larger anti-proliferative effect than unmodified tetrac. Fluorescence-activated cell sorting analysis of harvested cells revealed tetrac and nano-tetrac induced concentration-dependent apoptosis that was correlated with expression of pro-apoptotic proteins, such as p53, p21, PIG3 and BAD for nano-tetrac, while unmodified tetrac showed a different profile. Approximately additive anti-proliferative effects were found for the combinations of tetrac and resveratrol, tetrac and cetuximab (Erbitux), and nano-tetrac and cetuximab. Our in vitro perfusion cancer cell system together with mathematical modeling successfully described the anti-proliferative effects over time of tetrac and nano-tetrac and may be useful for dose-finding and studying the pharmacodynamics of other chemotherapeutic agents or their combinations
    • …
    corecore