24,153 research outputs found

    Water temperature dynamics in High Arctic river basins

    No full text
    Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high-resolution water column thermal regimes for glacier-fed and non-glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier-fed rivers (0.3-3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7-2.3 °C km ). Non-glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9-5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p<0.01) with incoming short-wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin-specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high-latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high-latitude river systems

    Evolution of a stream ecosystem in recently deglaciated terrain

    No full text
    Climate change and associated glacial recession create new stream habitat that leads to the assembly of new riverine communities through primary succession. However, there are still very few studies of the patterns and processes of community assembly during primary succession for stream ecosystems. We illustrate the rapidity with which biotic communities can colonize and establish in recently formed streams by examining Stonefly Creek in Glacier Bay, Alaska (USA), which began to emerge from a remnant glacial ice mass between 1976 and 1979. By 2002, 57 macroinvertebrate and 27 microcrustacea species had become established. Within 10 years of the stream's formation, pink salmon and Dolly Varden charr colonized, followed by other fish species, including juvenile red and silver salmon, Coast Range sculpin, and sticklebacks. Stable-isotope analyses indicate that marine-derived nitrogen from the decay of salmon carcasses was substantially assimilated within the aquatic food web by 2004. The findings from Stonefly Creek are compared with those from a long-term study of a similarly formed but older stream (12 km to the northeast) to examine possible similarities in macroinvertebrate community and biological trait composition between streams at similar stages of development. Macroinvertebrate community assembly appears to have been initially strongly deterministic owing to low water temperature associated with remnant ice masses. In contrast, microcrustacean community assembly appears to have been more stochastic. However, as stream age and water temperature increased, macroinvertebrate colonization was also more stochastic, and taxonomic similarity between Stonefly Creek and a stream at the same stage of development was,<50%. However the most abundant taxa were similar, and functional diversity of the two communities was almost identical. Tolerance is suggested as the major mechanism of community assembly. The rapidity with which salmonids and invertebrate communities have become established across an entire watershed has implications for the conservation of biodiversity in freshwater habitats

    Experimental evidence that predator range expansion modifies alpine stream community structure

    Get PDF
    Climate change is projected to facilitate altitudinal range expansions of ‘lowland’ taxa, creating novel species interactions. However, how range shifts will alter biotic interactions and community structure in alpine streams is not well understood. In the Pyrénées, climate-induced physicochemical habitat change is hypothesized to facilitate the colonization of high-altitude streams by Perla grandis, a carnivorous stonefly. A field-based experiment was conducted in mesocosm channels beside a hillslope spring (2000 m asl) in the Taillon-Gabiétous catchment, French Pyrénées. The influence of P. grandis predation on community structure, feeding trait composition, body-size spectrum, and algal chlorophyll a concentration was examined. Gut contents were analyzed and used to identify consumed prey. Total invertebrate density was not significantly reduced by P. grandis, but Baetis spp. densities were depressed in the treatment channels through a combination of direct consumption and predator avoidance (emigration/drift). However, despite fewer grazers in the predator treatment channels, the magnitude of the trophic cascade effect on basal resources (measured as chlorophyll a density) was comparable between treatment and control channels. The results of this experiment suggest that size/species-specific predation, intraguild predation, and interference competition are the likely mechanisms that altered the body-size spectrum in treatment channels. In synergy with climate-driven physicochemical habitat change, the extinction risk of some range-restricted taxa (prey and other predators) could be increased where P. grandis colonization occurs. Hence, conservation efforts are required to ensure that additional anthropogenic stressors (e.g., nutrient enrichment, cattle trampling, hydropower development, ski runs, and tourism) are limited to minimize further pressures on these unique and sensitive habitats

    Adaptive Lévy processes and area-restricted search in human foraging

    Get PDF
    A considerable amount of research has claimed that animals’ foraging behaviors display movement lengths with power-law distributed tails, characteristic of Lévy flights and Lévy walks. Though these claims have recently come into question, the proposal that many animals forage using Lévy processes nonetheless remains. A Lévy process does not consider when or where resources are encountered, and samples movement lengths independently of past experience. However, Lévy processes too have come into question based on the observation that in patchy resource environments resource-sensitive foraging strategies, like area-restricted search, perform better than Lévy flights yet can still generate heavy-tailed distributions of movement lengths. To investigate these questions further, we tracked humans as they searched for hidden resources in an open-field virtual environment, with either patchy or dispersed resource distributions. Supporting previous research, for both conditions logarithmic binning methods were consistent with Lévy flights and rank-frequency methods–comparing alternative distributions using maximum likelihood methods–showed the strongest support for bounded power-law distributions (truncated Lévy flights). However, goodness-of-fit tests found that even bounded power-law distributions only accurately characterized movement behavior for 4 (out of 32) participants. Moreover, paths in the patchy environment (but not the dispersed environment) showed a transition to intensive search following resource encounters, characteristic of area-restricted search. Transferring paths between environments revealed that paths generated in the patchy environment were adapted to that environment. Our results suggest that though power-law distributions do not accurately reflect human search, Lévy processes may still describe movement in dispersed environments, but not in patchy environments–where search was area-restricted. Furthermore, our results indicate that search strategies cannot be inferred without knowing how organisms respond to resources–as both patched and dispersed conditions led to similar Lévy-like movement distributions

    Vibrational Relaxation and Redistribution Dynamics in Ruthenium(II) Polypyridyl-Based Charge-Transfer Excited States: A Combined Ultrafast Electronic and Infrared Absorption Study

    Get PDF
    Ultrafast time-resolved electronic and infrared absorption measurements have been carried out on a series of Ru­(II) polypyridyl complexes in an effort to delineate the dynamics of vibrational relaxation in this class of charge transfer chromophores. Time-dependent density functional theory calculations performed on compounds of the form [Ru­(CN-Me-bpy)x(bpy)3‑x]2+ (x = 1–3 for compounds 1–3, respectively, where CN-Me-bpy is 4,4′-dicyano-5,5′-dimethyl-2,2′-bipyridine and bpy is 2,2′-bipyridine) reveal features in their charge-transfer absorption envelopes that allow for selective excitation of the Ru­(II)–(CN-Me-bpy) moiety, the lowest-energy MLCT state(s) in each compound of the series. Changes in band shape and amplitude of the time-resolved differential electronic absorption data are ascribed to vibrational cooling in the CN-Me-bpy-localized 3MLCT state with a time constant of 8 ± 3 ps in all three compounds. This conclusion was corroborated by picosecond time-resolved infrared absorption measurements; sharpening of the CN stretch in the 3MLCT excited state was observed with a time constant of 3.0 ± 1.5 ps in all three members of the series. Electronic absorption data acquired at higher temporal resolution revealed spectral modulation over the first 2 ps occurring with a time constant of τ = 170 ± 50 fs, in compound 1; corresponding effects are significantly attenuated in compound 2 and virtually absent in compound 3. We assign this feature to intramolecular vibrational redistribution (IVR) within the 3MLCT state and represents a rare example of this process being identified from time-resolved electronic absorption data for this important class of chromophores

    The Challenge of Staging Breast Cancer With PET/CT in the Era of COVID Vaccination

    Get PDF
    We report a case series of biopsy-proven reactive axillary lymph nodes, which were avid on FDG PET/CT in breast cancer patients post COVID-19 vaccination. With 4 cases presenting in a consecutive 10-day period, it became apparent that metabolically active axillary lymphadenopathy is an adverse effect of COVID-19 vaccines, currently being deployed worldwide. This may lead to patients undergoing unnecessary biopsy. We have started taking a COVID-19 vaccine status history before PET/CT. If enlarged/metabolically active axillary nodes are identified in the ipsilateral vaccinated arm, then axillary ultrasound at 4 weeks is suggested

    A lifetime’s adventure in extracellular K+ regulation: the Scottish connection

    Get PDF
    In a career that has spanned 45 years and shows no signs of slowing down, Dr Bruce Ransom has devoted considerable time and energy to studying regulation of interstitial K+. When Bruce commenced his studies in 1969 virtually nothing was known of the functions of glial cells, but Bruce’s research contributed to the physiological assignation of function to mammalian astrocytes, namely interstitial K+ buffering. The experiments that I describe in this review concern the response of the membrane potential (Em) of in vivo cat cortical astrocytes to changes in [K+]o, an experimental manoeuvre that was achieved in two different ways. The first involved recording the Em of an astrocyte while the initial aCSF was switched to one with different K+, whereas in the second series of experiments the cortex was stimulated and the response of the astrocyte Em to the K+ released from neighbouring neurons was recorded. The astrocytes responded in a qualitatively predictable manner, but quantitatively the changes were not as predicted by the Nernst equation. Elevations in interstitial K+ are not sustained and K+ returns to baseline rapidly due to the buffering capacity of astrocytes, a phenomenon studied by Bruce, and his son Chris, published 27 years after Bruce’s initial publications. Thus, a lifetime spent investigating K+ buffering has seen enormous advances in glial research, from the time cells were identified as ‘presumed’ glial cells or ‘silent cells’, to the present day, where glial cells are recognised as contributing to every important physiological brain function
    • …
    corecore