38 research outputs found

    Temporal inflection points in decorated pottery: a bayesian refinement of the late formative chronology in the Southern Lake Titicaca Basin, Bolivia

    Get PDF
    The Late Formative period immediately precedes the emergence of Tiwanaku, one of the earliest South American states, yet it is one of the most poorly understood periods in the southern Lake Titicaca Basin (Bolivia). In this article, we refine the ceramic chronology of this period with large sets of dates from eight sites, focusing on temporal inflection points in decorated ceramic styles. These points, estimated here by Bayesian models, index specific moments of change: (1) cal AD 120 (60-170, 95% probability): the first deposition of Kalasasaya red-rimmed and zonally incised styles; (2) cal AD 240 (190-340, 95% probability): a tentative estimate of the final deposition of Kalasasaya zonally incised vessels; (3) cal AD 420 (380-470, 95% probability): the final deposition of Kalasasaya red-rimmed vessels; and (4) cal AD 590 (500-660, 95% probability): the first deposition of Tiwanaku Redwares. These four modeled boundaries anchor an updated Late Formative chronology, which includes the Initial Late Formative phase, a newly identified decorative hiatus between the Middle and Late Formative periods. The models place Qeya and transitional vessels between inflection points 3 and 4 based on regionally consistent stratigraphic sequences. This more precise chronology will enable researchers to explore the trajectories of other contemporary shifts during this crucial period in Lake Titicaca Basin's prehistory.Fil: Marsh, Erik Johnson. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Facultad de Ciencias Exactas y Naturales. Laboratorio de Paleoecología Humana; ArgentinaFil: Roddick, Andrew P.. Mc Master University; CanadáFil: Bruno, Maria C.. Dickinson College; Estados UnidosFil: Smith, Scott C.. Franklin & Marshall College; Estados UnidosFil: Janusek, John W.. Vanderbilt University; Estados UnidosFil: Hastorf, Christine A.. University of California at Berkeley; Estados Unido

    Does Global Warming Increase Establishment Rates of Invasive Alien Species? A Centurial Time Series Analysis

    Get PDF
    BACKGROUND: The establishment rate of invasive alien insect species has been increasing worldwide during the past century. This trend has been widely attributed to increased rates of international trade and associated species introductions, but rarely linked to environmental change. To better understand and manage the bioinvasion process, it is crucial to understand the relationship between global warming and establishment rate of invasive alien species, especially for poikilothermic invaders such as insects. METHODOLOGY/PRINCIPAL FINDINGS: We present data that demonstrate a significant positive relationship between the change in average annual surface air temperature and the establishment rate of invasive alien insects in mainland China during 1900-2005. This relationship was modeled by regression analysis, and indicated that a 1 °C increase in average annual surface temperature in mainland China was associated with an increase in the establishment rate of invasive alien insects of about 0.5 species year⁻¹. The relationship between rising surface air temperature and increasing establishment rate remained significant even after accounting for increases in international trade during the period 1950-2005. Moreover, similar relationships were detected using additional data from the United Kingdom and the contiguous United States. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the perceived increase in establishments of invasive alien insects can be explained only in part by an increase in introduction rate or propagule pressure. Besides increasing propagule pressure, global warming is another driver that could favor worldwide bioinvasions. Our study highlights the need to consider global warming when designing strategies and policies to deal with bioinvasions

    Increased noise levels have different impacts on the anti-predator behaviour of two sympatric fish species.

    Get PDF
    types: Journal ArticleCopyright: © 2014 Voellmy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Animals must avoid predation to survive and reproduce, and there is increasing evidence that man-made (anthropogenic) factors can influence predator-prey relationships. Anthropogenic noise has been shown to have a variety of effects on many species, but work investigating the impact on anti-predator behaviour is rare. In this laboratory study, we examined how additional noise (playback of field recordings of a ship passing through a harbour), compared with control conditions (playback of recordings from the same harbours without ship noise), affected responses to a visual predatory stimulus. We compared the anti-predator behaviour of two sympatric fish species, the three-spined stickleback (Gasterosteus aculeatus) and the European minnow (Phoxinus phoxinus), which share similar feeding and predator ecologies, but differ in their body armour. Effects of additional-noise playbacks differed between species: sticklebacks responded significantly more quickly to the visual predatory stimulus during additional-noise playbacks than during control conditions, while minnows exhibited no significant change in their response latency. Our results suggest that elevated noise levels have the potential to affect anti-predator behaviour of different species in different ways. Future field-based experiments are needed to confirm whether this effect and the interspecific difference exist in relation to real-world noise sources, and to determine survival and population consequences.University of BristolBasler Stiftung für Biologische ForschungDefr

    Conceptual and practical challenges for implementing the communities of practice model on a national scale - a Canadian cancer control initiative

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer program delivery, like the rest of health care in Canada, faces two ongoing challenges: to coordinate a pan-Canadian approach across complex provincial jurisdictions, and to facilitate the rapid translation of knowledge into clinical practice. Communities of practice, or CoPs, which have been described by Etienne Wenger as a collaborative learning platform, represent a promising solution to these challenges because they rely on bottom-up rather than top-down social structures for integrating knowledge and practice across regions and agencies. The communities of practice model has been realized in the corporate (e.g., Royal Dutch Shell, Xerox, IBM, etc) and development (e.g., World Bank) sectors, but its application to health care is relatively new. The Canadian Partnership Against Cancer (CPAC) is exploring the potential of Wenger's concept in the Canadian health care context. This paper provides an in-depth analysis of Wenger's concept with a focus on its applicability to the health care sector.</p> <p>Discussion</p> <p>Empirical studies and social science theory are used to examine the utility of Wenger's concept. Its value lies in emphasizing learning from peers and through practice in settings where innovation is valued. Yet the communities of practice concept lacks conceptual clarity because Wenger defines it so broadly and sidelines issues of decision making within CoPs. We consider the implications of his broad definition to establishing an informed nomenclature around this specific type of collaborative group. The CoP Project under CPAC and communities of practice in Canadian health care are discussed.</p> <p>Summary</p> <p>The use of communities of practice in Canadian health care has been shown in some instances to facilitate quality improvements, encourage buy in among participants, and generate high levels of satisfaction with clinical leadership and knowledge translation among participating physicians. Despite these individual success stories, more information is required on how group decisions are made and applied to the practice world in order to leverage the potential of Wenger's concept more fully, and advance the science of knowledge translation within an accountability framework.</p

    Effects of Ocean Acidification on Learning in Coral Reef Fishes

    Get PDF
    Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective

    Water Contamination Reduces the Tolerance of Coral Larvae to Thermal Stress

    Get PDF
    Coral reefs are highly susceptible to climate change, with elevated sea surface temperatures (SST) posing one of the main threats to coral survival. Successful recruitment of new colonies is important for the recovery of degraded reefs following mortality events. Coral larvae require relatively uncontaminated substratum on which to metamorphose into sessile polyps, and the increasing pollution of coastal waters therefore constitutes an additional threat to reef resilience. Here we develop and analyse a model of larval metamorphosis success for two common coral species to quantify the interactive effects of water pollution (copper contamination) and SST. We identify thresholds of temperature and pollution that prevent larval metamorphosis, and evaluate synergistic interactions between these stressors. Our analyses show that halving the concentration of Cu can protect corals from the negative effects of a 2–3°C increase in SST. These results demonstrate that effective mitigation of local impacts can reduce negative effects of global stressors

    Physiological Benefits of Being Small in a Changing World: Responses of Coho Salmon (Oncorhynchus kisutch) to an Acute Thermal Challenge and a Simulated Capture Event

    Get PDF
    Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to 20°C at 3°C h−1) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with full-size males. Metabolic recovery following exhaustive exercise at 7°C was size-specific, with jacks regaining resting levels of metabolism at 9.3±0.5 h post-exercise in comparison with 12.3±0.4 h for full-size fish of both sexes. Excess post-exercise oxygen consumption scaled with body mass in male fish with an exponent of b = 1.20±0.08. Jacks appeared to regain osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak metabolic rate during post-exercise recovery scaled with body mass with an exponent of b∼1, suggesting that the slower metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of ∼6 mg min−1 kg−1. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males, suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish populations over time

    Effects of an Infectious Fungus, Batrachochytrium dendrobatidis, on Amphibian Predator-Prey Interactions

    Get PDF
    The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey
    corecore