282 research outputs found

    Forecasting for day-ahead offshore maintenance scheduling under uncertainty

    Get PDF
    Offshore wind farm maintenance operations are complex and dangerous, and as such are subject to strict safety constraints. In addition, crew and vessels must be scheduled in advance for both planned and reactive maintenance operations. Meteorological forecasts on many time-scales are used to inform scheduling decisions, but are imperfect. Short-term maintenance scheduling is therefore a problem of decision-making under uncertainty. This paper proposes a probabilistic approach to the short-term scheduling problem based on a cost-loss model for individual maintenance missions, and probabilistic forecasts of appropriate access windows. This approach is found to increase the utilisation of possible access windows compared to using deterministic decision rules. The impact of forecasting on the availability and operational costs of oshore wind is then examined using a Monte Carlo-based cost model. This has quantified the impact on availability and revenue performance under a range of site conditions

    Cumulus cloud venting of mixed layer ozone

    Get PDF
    Observations are presented which substantiate the hypothesis that significant vertical exchange of ozone and aerosols occurs between the mixed layer and the free troposphere during cumulus cloud convective activity. The experiments utilized the airborne Ultra-Violet Differential Absorption Lidar (UV-DIAL) system. This system provides simultaneous range resolved ozone concentration and aerosol backscatter profiles with high spatial resolution. Evening transects were obtained in the downwind area where the air mass had been advected. Space-height analyses for the evening flight show the cloud debris as patterns of ozone typically in excess of the ambient free tropospheric background. This ozone excess was approximately the value of the concentration difference between the mixed layer and free troposphere determined from independent vertical soundings made by another aircraft in the afternoon

    Development of a high-altitude airborne dial system: The Lidar Atmospheric Sensing Experiment (LASE)

    Get PDF
    The ability of a Differential Absorption Lidar (DIAL) system to measure vertical profiles of H2O in the lower atmosphere was demonstrated both in ground-based and airborne experiments. In these experiments, tunable lasers were used that required real-time experimenter control to locate and lock onto the atmospheric H2O absorption line for the DIAL measurements. The Lidar Atmospheric Sensing Experiment (LASE) is the first step in a long-range effort to develop and demonstrate an autonomous DIAL system for airborne and spaceborne flight experiments. The LASE instrument is being developed to measure H2O, aerosol, and cloud profiles from a high-altitude ER-2 (extended range U-2) aircraft. The science of the LASE program, the LASE system design, and the expected measurement capability of the system are discussed

    A review of very short-term wind and solar power forecasting

    Get PDF
    Installed capacities of wind and solar power have grown rapidly over recent years, and the pool of literature on very short-term (minutes- to hours-ahead) wind and solar forecasting has grown in line with this. This paper reviews established and emerging approaches to provide an up-to-date view of the field. Knowledge transfer between wind and solar forecasting has benefited the field and is discussed, and new opportunities are identified, particularly regarding use of remote sensing technology. Forecasting methodologies and study design are compared and recommendations for high quality, reproducible results are presented. In particular, the choice of suitable benchmarks and use of sufficiently long datasets is highlighted. A case study of three distinct approaches to probabilistic wind power forecasting is presented using an open dataset. The case study provides an example of exemplary forecast evaluation, and open source code allows for its reproduction and use in future work

    In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC^4

    Get PDF
    A NASA DC-8 research aircraft penetrated tropospheric gas and aerosol plumes sourced from active volcanoes in Ecuador and Colombia during the Tropical Composition, Cloud and Climate Coupling (TC^4) mission in July–August 2007. The likely source volcanoes were Tungurahua (Ecuador) and Nevado del Huila (Colombia). The TC^4 data provide rare insight into the chemistry of volcanic plumes in the tropical troposphere and permit a comparison of SO_2 column amounts measured by the Ozone Monitoring Instrument (OMI) on the Aura satellite with in situ SO_2 measurements. Elevated concentrations of SO_2, sulfate aerosol, and particles were measured by DC-8 instrumentation in volcanic outflow at altitudes of 3–6 km. Estimated plume ages range from ~2 h at Huila to ~22–48 h downwind of Ecuador. The plumes contained sulfate-rich accumulation mode particles that were variably neutralized and often highly acidic. A significant fraction of supermicron volcanic ash was evident in one plume. In-plume O_3 concentrations were ~70%–80% of ambient levels downwind of Ecuador, but data are insufficient to ascribe this to O_3 depletion via reactive halogen chemistry. The TC^4 data record rapid cloud processing of the Huila volcanic plume involving aqueous-phase oxidation of SO_2 by H_2O_2, but overall the data suggest average in-plume SO_2 to sulfate conversion rates of ~1%–2% h^(−1). SO_2 column amounts measured in the Tungurahua plume (~0.1–0.2 Dobson units) are commensurate with average SO_2 columns retrieved from OMI measurements in the volcanic outflow region in July 2007. The TC^4 data set provides further evidence of the impact of volcanic emissions on tropospheric acidity and oxidizing capacity
    corecore