22 research outputs found

    Genetic Influences on the Development of Cerebral Cortical Thickness During Childhood and Adolescence in a Dutch Longitudinal Twin Sample:The Brainscale Study

    Get PDF
    Previous studies have demonstrated that cortical thickness (CT) is under strong genetic control across the life span. However, little is known about genetic influences that cause changes in cortical thickness (ΔCT) during brain development. We obtained 482 longitudinal MRI scans at ages 9, 12, and 17 years from 215 twins and applied structural equation modeling to estimate genetic influences on (1) cortical thickness between regions and across time, and (2) changes in cortical thickness between ages. Although cortical thickness is largely mediated by the same genetic factor throughout late childhood and adolescence, we found evidence for influences of distinct genetic factors on regions across space and time. In addition, we found genetic influences for cortical thinning during adolescence that is mostly due to fluctuating influences from the same genetic factor, with evidence of local influences from a second emerging genetic factor. This fluctuating core genetic factor and emerging novel genetic factor might be implicated in the rapid cognitive and behavioral development during childhood and adolescence, and could potentially be targets for investigation into the manifestation of psychiatric disorders that have their origin in childhood and adolescence

    Lithium surveillance by community pharmacists and physicians in ambulatory patients:a retrospective cohort study

    Get PDF
    Background Shared care agreements between clinical pharmacists and physicians can improve suboptimal lithium monitoring in in- and outpatient settings. However, it is unknown whether incorporating community pharmacists in such agreements can also improve lithium monitoring in an outpatient setting. Aim To assess the necessity for a shared care agreement for lithium monitoring in our region by investigating: intervention rates by community pharmacists and whether those are sufficient; lithium monitoring by physicians in ambulatory patients; the extent of laboratory parameter exchange to community pharmacists. Method Patient files of lithium users were surveyed in a retrospective cohort study among 21 community pharmacies in the Northern Netherlands. Outcome was the intervention rate by community pharmacists and whether those were deemed sufficient by an expert panel. Additionally, we investigated both the percentages of patients monitored according to current guidelines and of laboratory parameters exchanged to community pharmacists. Results 129 patients were included. Interventions were performed in 64.4% (n = 29), 20.8% (n = 5), and 25.0% (n = 1) of initiations, discontinuations, and dosage alterations of drugs interacting with lithium, respectively. The expert panel deemed 40.0% (n = 14) of these interventions as "insufficient". Physicians monitored 40.3% (n = 52) of the patients according to current guidelines for lithium serum levels and kidney functions combined. Approximately half of the requested laboratory parameters were available to the community pharmacist. Conclusion Intervention rates by community pharmacists and lithium monitoring by physicians can be improved. Therefore, a shared care agreement between community pharmacists, clinical pharmacists, and physicians is needed to improve lithium monitoring in ambulatory patients

    Generation of human pluripotent stem cell reporter lines for the isolation of and reporting on astrocytes generated from ventral midbrain and ventral spinal cord neural progenitors

    Get PDF
    Astrocytes play a critical role during the development and the maintenance of the CNS in health and disease. Yet, their lack of accessibility from fetuses and from the brain of diseased patients has hindered our understanding of their full implication in developmental and pathogenic processes. Human pluripotent stem cells (PSCs) are an alternative source to obtain large quantities of astrocytes in vitro, for mechanistic studies of development and disease. However, these studies often require highly pure populations of astrocytes, which are not always achieved, depending on the PSC lines and protocols used. Here, we describe the generation and characterization of human PSC reporter lines expressing TagRFP driven by the ABC1D region of the human GFAP promoter, as new cellular model for generating homogenous population of astrocytes generated from CNS regionally defined PSC-derived neural progenitors. GFAABC1D::TagRFP-expressing astrocytes can be purified by fluorescent-activated cell sorting and maintain a bright expression for several additional weeks. These express canonical astrocyte markers NF1A, S100β, CX43, GLAST, GS and CD44. These new cellular models, from which highly pure populations of fluorescence-expressing astrocytes can be obtained, provide a new platform for studies where pure or fluorescently labeled astrocyte populations are necessary, for example to assess pro-inflammatory cytokine and chemokine release in response to specific treatment, and uptake and degradation of fluorescently labeled pathogenic proteins, as reported in this study

    The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder

    Get PDF
    Background: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. Methods: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. Results: FDRs-BD had significantly larger ICV (d = +0.16, q <.05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = −0.12, q <.05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < −0.09, q <.05 corrected); and third ventricle was larger (d = +0.15, q <.05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. Conclusions: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct

    Sociale media in en rondom de vluchtelingen-noodopvang bij Nijmegen

    No full text
    Social media in and around the emergency shelter for refugees near Nijmegen, the Netherlands To cope with the limited capacity of the established reception centres during the refugee crisis of 2015, the Central Agency for the Reception of Asylum Seekers (COA) set up emergency reception centers for refugees such as Heumensoord nearby the Dutch city of Nijmegen. At the peak of the crisis, the Heumensoord centre hosted about 3,000 asylum seekers. COA’s organizational approach to manage reception centers was characterized by a top-down policy. At the same time, host communities of local residents around the emergency reception center developed horizontal relations within and beyond the walls of the center, actively using available social media platforms such as Facebook. These horizontal relations enabled the development of social relations, and facilitated the exchange of goods and services. This article demonstrates the different communication strategies used by the stakehol- ders at Heumensoord, and how the different worlds of asylum seekers and the receiving, host communities came together. It also presents bottom-up alternatives to the top-down crisis approaches by unravelling cooperation options and the use of social media platforms that can lead to a more resili- ent interaction between asylum seekers and local communities

    Social Media in and Around a Temporary Large-Scale Refugee Shelter in the Netherlands

    No full text
    During the 2015 refugee crisis in Europe, temporary refugee shelters arose in the Netherlands to shelter the large influx of asylum seekers. The largest shelter was located in the eastern part of the country. This shelter, where tents housed nearly 3,000 asylum seekers, was managed with a firm top-down approach. However, many residents of the shelter—mainly Syrians and Eritreans—developed horizontal relations with the local receiving society, using social media to establish contact and exchange services and goods. This case study shows how various types of crisis communication played a role and how the different worlds came together. Connectivity is discussed in relation to inclusion, based on resilient (non-)humanitarian approaches that link society with social media. Moreover, we argue that the refugee crisis can be better understood by looking through the lens of connectivity, practices, and migration infrastructure instead of focusing only on state policies

    Genetic influences on the development of cerebral cortical thickness during childhood and adolescence in a Dutch longitudinal twin sample : The brainscale study

    Get PDF
    Previous studies have demonstrated that cortical thickness (CT) is under strong genetic control across the life span. However, little is known about genetic influences that cause changes in cortical thickness (δCT) during brain development. We obtained 482 longitudinal MRI scans at ages 9, 12, and 17 years from 215 twins and applied structural equation modeling to estimate genetic influences on (1) cortical thickness between regions and across time, and (2) changes in cortical thickness between ages. Although cortical thickness is largely mediated by the same genetic factor throughout late childhood and adolescence, we found evidence for influences of distinct genetic factors on regions across space and time. In addition, we found genetic influences for cortical thinning during adolescence that is mostly due to fluctuating influences from the same genetic factor, with evidence of local influences from a second emerging genetic factor. This fluctuating core genetic factor and emerging novel genetic factor might be implicated in the rapid cognitive and behavioral development during childhood and adolescence, and could potentially be targets for investigation into the manifestation of psychiatric disorders that have their origin in childhood and adolescence

    Genetic and environmental influences on functional connectivity within and between canonical cortical resting-state networks throughout adolescent development in boys and girls

    No full text
    The human brain is active during rest and hierarchically organized into intrinsic functional networks. These functional networks are largely established early in development, with reports of a shift from a local to more distributed organization during childhood and adolescence. It remains unknown to what extent genetic and environmental influences on functional connectivity change throughout adolescent development. We measured functional connectivity within and between eight cortical networks in a longitudinal resting-state fMRI study of adolescent twins and their older siblings on two occasions (mean ages 13 and 18 years). We modelled the reliability for these inherently noisy and head-motion sensitive measurements by analyzing data from split-half sessions. Functional connectivity between resting-state networks decreased with age whereas functional connectivity within resting-state networks generally increased with age, independent of general cognitive functioning. Sex effects were sparse, with stronger functional connectivity in the default mode network for girls compared to boys, and stronger functional connectivity in the salience network for boys compared to girls. Heritability explained up to 53% of the variation in functional connectivity within and between resting-state networks, and common environment explained up to 33%. Genetic influences on functional connectivity remained stable during adolescent development. In conclusion, longitudinal age-related changes in functional connectivity within and between cortical resting-state networks are subtle but wide-spread throughout adolescence. Genes play a considerable role in explaining individual variation in functional connectivity with mostly stable influences throughout adolescence

    Development of the brain's structural network efficiency in early adolescence: A longitudinal DTI twin study

    No full text
    The brain is a network and our intelligence depends in part on the efficiency of this network. The network of adolescents differs from that of adults suggesting developmental changes. However, whether the network changes over time at the individual level and, if so, how this relates to intelligence, is unresolved in adolescence. In addition, the influence of genetic factors in the developing network is not known. Therefore, in a longitudinal study of 162 healthy adolescent twins and their siblings (mean age at baseline 9.9 [range 9.0-15.0] years), we mapped local and global structural network efficiency of cerebral fiber pathways (weighted with mean FA and streamline count) and assessed intelligence over a three-year interval. We find that the efficiency of the brain's structural network is highly heritable (locally up to 74%). FA-based local and global efficiency increases during early adolescence. Streamline count based local efficiency both increases and decreases, and global efficiency reorganizes to a net decrease. Local FA-based efficiency was correlated to IQ. Moreover, increases in FA-based network efficiency (global and local) and decreases in streamline count based local efficiency are related to increases in intellectual functioning. Individual changes in intelligence and local FA-based efficiency appear to go hand in hand in frontal and temporal areas. More widespread local decreases in streamline count based efficiency (frontal cingulate and occipital) are correlated with increases in intelligence. We conclude that the teenage brain is a network in progress in which individual differences in maturation relate to level of intellectual functioning. Hum Brain Mapp 36:4938-4953, 2015
    corecore