196 research outputs found

    The evolution of cooperation in a mobile population on random networks: Network topology matters only for low-degree networks

    Full text link
    We consider a finite structured population of mobile individuals that strategically explore a network using a Markov movement model and interact with each other via a public goods game. We extend the model of Erovenko et al. (2019) from complete, circle, and star graphs to various random networks to further investigate the effect of network topology on the evolution of cooperation. We discover that the network topology affects the outcomes of the evolutionary process only for networks of small average degree. Once the degree becomes sufficiently high, the outcomes match those for the complete graph. The actual value of the degree when this happens is much smaller than that of the complete graph, and the threshold value depends on other network characteristics

    An acute bout of cycling does not induce compensatory responses in pre-menopausal women not using hormonal contraceptives

    Get PDF
    There is a clear need to improve understanding of the effects of physical activity and exercise on appetite control. Therefore, the acute and short-term effects (three days) of a single bout of cycling on energy intake and energy expenditure were examined in women not using hormonal contraceptives. Sixteen active (n = 8) and inactive (n = 8) healthy pre-menopausal women completed a randomised crossover design study with two conditions (exercise and control). The exercise day involved cycling for 1 h (50% of maximum oxygen uptake) and resting for 2 h, whilst the control day comprised 3 h of rest. On each experimental day participants arrived at the laboratory fasted, consumed a standardised breakfast and an ad libitum pasta lunch. Food diaries and combined heart rate-accelerometer monitors were used to assess free-living food intake and energy expenditure, respectively, over the subsequent three days. There were no main effects or condition (exercise vs control) by group (active vs inactive) interaction for absolute energy intake (P > 0.05) at the ad libitum laboratory lunch meal, but there was a condition effect for relative energy intake (P = 0.004, ηp2 = 0.46) that was lower in the exercise condition (1417 ± 926 kJ vs. 2120 ± 923 kJ). Furthermore, post-breakfast satiety was higher in the active than in the inactive group (P = 0.005, ηp2 = 0.44). There were no main effects or interactions (P > 0.05) for mean daily energy intake, but both active and inactive groups consumed less energy from protein (14 ± 3% vs. 16 ± 4%, P = 0.016, ηp2 = 0.37) and more from carbohydrate (53 ± 5% vs. 49 ± 7%, P = 0.031, ηp2 = 0.31) following the exercise condition. This study suggests that an acute bout of cycling does not induce compensatory responses in active and inactive women not using hormonal contraceptives, while the stronger satiety response to the standardised breakfast meal in active individuals adds to the growing literature that physical activity helps improve the sensitivity of short-term appetite control

    Network topology and movement cost, not updating mechanism, determine the evolution of cooperation in mobile structured populations

    Full text link
    Evolutionary models are used to study the self-organisation of collective action, often incorporating population structure due to its ubiquitous presence and long-known impact on emerging phenomena. We investigate the evolution of multiplayer cooperation in mobile structured populations, where individuals move strategically on networks and interact with those they meet in groups of variable size. We find that the evolution of multiplayer cooperation primarily depends on the network topology and movement cost while using different stochastic update rules seldom influences evolutionary outcomes. Cooperation robustly co-evolves with movement on complete networks and structure has a partially detrimental effect on it. These findings contrast an established wisdom in evolutionary graph theory that cooperation can only emerge under some update rules and if the average degree is low. We find that group-dependent movement erases the locality of interactions, suppresses the impact of evolutionary structural viscosity on the fitness of individuals, and leads to assortative behaviour that is much more powerful than viscosity in promoting cooperation. We analyse the differences remaining between update rules through a comparison of evolutionary outcomes and fixation probabilities.Comment: 26 pages, 12 figures, 1 tabl
    corecore