2,168 research outputs found

    Effects of Attractiveness and Social Status on Dating Desire in Heterosexual Adolescents: An Experimental Study

    Get PDF
    The present study examined to what extent adolescent dating desire is based on attractiveness and social status of a potential short-term partner. Further, we tested whether self-perceived mate value moderated the relationship between dating desire and attractiveness of a potential partner. Data were used from a sample of 1,913 adolescents aged 13–18. Participants rated the importance of various characteristics of a potential partner and also participated in an experimental vignette study in which dating desire was measured with either low or high attractive potential partners having either a high or low social status. The results showed that boys rated attractiveness as more important than girls, while social status was rated as relatively unimportant by both sexes. In addition, in the experimental vignette study, it was found that attractiveness was the primary factor for boys’ dating desire. Only when a potential partner was attractive, social status became important for boys’ dating desire. For girls, on the other hand, it appeared that both attractiveness and social status of a potential partner were important for their dating desire. Finally, boys and girls who perceived themselves as having a high mate value showed more dating desire toward an attractive potential partner compared to adolescents who perceived themselves as having a low mate value. The present results extend previous research by showing that attractiveness of a potential partner is important to both adolescent boys and girls, but social status does not strongly affect dating desire during this particular age period

    Association between Changes in Muscle Quality with Exercise Training and Changes in Cardiorespiratory Fitness Measures in Individuals with Type 2 Diabetes Mellitus: Results from the HART-D Study

    Get PDF
    Introduction: Type 2 diabetes mellitus (T2DM) is associated with a reduction in muscle quality. However, there is inadequate empirical evidence to determine whether changes in muscle quality following exercise are associated with improvement in cardiorespiratory fitness (CRF) in individuals with T2DM. The objective of this study was to investigate the association between change in muscle quality following a 9-month intervention of aerobic training (AT), resistance training (RT) or a combination of both (ATRT) and cardiorespiratory fitness (CRF) in individuals with T2DM. Material and Methods A total of 196 participants were randomly assigned to a control, AT, RT, or combined ATRT for a 9-months intervention. The exposure variable was change in muscle quality [(Post: leg muscle strength/leg muscle mass)-[(Pre: leg muscle strength/leg muscle mass)]. Dependent variables were change in CRF measures including absolute and relative VO2peak, and treadmill time to exhaustion (TTE) and estimated metabolic equivalent task (METs). Results Continuous change in muscle quality was independently associated with change in absolute (β = 0.015; p = 0.019) and relative (β = 0.200; p = 0.005) VO2peak, and TTE (β = 0.170; p = 0.043), but not with estimated METs (p > 0.05). A significant trend was observed across tertiles of change in muscle quality for changes in absolute (β = 0.050; p = 0.005) and relative (β = 0.624; p = 0.002) VO2peak following 9 months of exercise training. No such association was observed for change in TTE and estimated METs (p > 0.05). Discussion: The results from this ancillary study suggest that change in muscle quality following exercise training is associated with a greater improvement in CRF in individuals with T2DM. Given the effect RT has on increasing muscle quality, especially as part of a recommended training program (ATRT), individuals with T2DM should incorporate RT into their AT regimens to optimize CRF improvement

    Incidence, severity, aetiology and type of neck injury in men's amateur rugby union: a prospective cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is a paucity of epidemiological data on neck injury in amateur rugby union populations. The objective of this study was to determine the incidence, severity, aetiology and type of neck injury in Australian men's amateur rugby union.</p> <p>Methods</p> <p>Data was collected from a cohort of 262 participants from two Australian amateur men's rugby union clubs via a prospective cohort study design. A modified version of the Rugby Union Injury Report Form for Games and Training was used by the clubs physiotherapist or chiropractor in data collection.</p> <p>Results</p> <p>The participants sustained 90 (eight recurrent) neck injuries. Exposure time was calculated at 31143.8 hours of play (12863.8 hours of match time and 18280 hours of training). Incidence of neck injury was 2.9 injuries/1000 player-hours (95%CI: 2.3, 3.6). As a consequence 69.3% neck injuries were minor, 17% mild, 6.8% moderate and 6.8% severe. Neck compression was the most frequent aetiology and was weakly associated with severity. Cervical facet injury was the most frequent neck injury type.</p> <p>Conclusions</p> <p>This is the first prospective cohort study in an amateur men's rugby union population since the inception of professionalism that presents injury rate, severity, aetiology and injury type data for neck injury. Current epidemiological data should be sought when evaluating the risks associated with rugby union football.</p

    Integrated information increases with fitness in the evolution of animats

    Get PDF
    One of the hallmarks of biological organisms is their ability to integrate disparate information sources to optimize their behavior in complex environments. How this capability can be quantified and related to the functional complexity of an organism remains a challenging problem, in particular since organismal functional complexity is not well-defined. We present here several candidate measures that quantify information and integration, and study their dependence on fitness as an artificial agent ("animat") evolves over thousands of generations to solve a navigation task in a simple, simulated environment. We compare the ability of these measures to predict high fitness with more conventional information-theoretic processing measures. As the animat adapts by increasing its "fit" to the world, information integration and processing increase commensurately along the evolutionary line of descent. We suggest that the correlation of fitness with information integration and with processing measures implies that high fitness requires both information processing as well as integration, but that information integration may be a better measure when the task requires memory. A correlation of measures of information integration (but also information processing) and fitness strongly suggests that these measures reflect the functional complexity of the animat, and that such measures can be used to quantify functional complexity even in the absence of fitness data.Comment: 27 pages, 8 figures, one supplementary figure. Three supplementary video files available on request. Version commensurate with published text in PLoS Comput. Bio

    Anatomy of quantum chaotic eigenstates

    Get PDF
    The eigenfunctions of quantized chaotic systems cannot be described by explicit formulas, even approximate ones. This survey summarizes (selected) analytical approaches used to describe these eigenstates, in the semiclassical limit. The levels of description are macroscopic (one wants to understand the quantum averages of smooth observables), and microscopic (one wants informations on maxima of eigenfunctions, "scars" of periodic orbits, structure of the nodal sets and domains, local correlations), and often focusses on statistical results. Various models of "random wavefunctions" have been introduced to understand these statistical properties, with usually good agreement with the numerical data. We also discuss some specific systems (like arithmetic ones) which depart from these random models.Comment: Corrected typos, added a few references and updated some result

    The prevalence and functional impact of musculoskeletal conditions amongst clients of a primary health care facility in an under-resourced area of Cape Town

    Get PDF
    BACKGROUND:The extent of disease burden of musculoskeletal conditions (MSC) not due to injury has not been well determined in sub-Saharan Africa. The 1999 Global Burden of Disease study estimated the prevalence of osteoarthritis and rheumatoid arthritis to be 150/100,000 compared to 1,500/100,000 in Europe. The objective of the study was to determine the prevalence of MSC and the functional implications in a sample of people attending community health centres in Cape Town, South Africa. METHODS: A cross-sectional, descriptive study was conducted in clinics in two resource poor communities. Phase I consisted of screening and those who screened positive for peripheral or spinal joint pain went on to complete Phase II, which included the Stanford Health Assessment Questionnaire. RESULTS: 1005 people were screened in Phase I. Of these, 362 (36%) reported MSC not due to injury in the past three months. Those with MSC had higher rates of co-morbidities in every category than those without. The mean Disability Index for those with MSC was mild to moderate and moderate to severe in those over 55 years. CONCLUSIONS: Although the sample may not be representative of the general community, the prevalence is considerably greater than those reported elsewhere even when the population of the catchment area is used as a denominator, (367/100 000). The common presentation of MSC with co-morbid diabetes and hypertension requires holistic management by appropriately trained health care practitioners. Any new determination of burden of disease due to MSC should recognise that these disorders may be more prevalent in developing countries than previously estimated

    A Common Model for Cytokine Receptor Activation: Combined Scissor-Like Rotation and Self-Rotation of Receptor Dimer Induced by Class I Cytokine

    Get PDF
    The precise mechanism by which the binding of a class I cytokine to the extracellular domain of its corresponding receptor transmits a signal through the cell membrane remains unclear. Receptor activation involves a cytokine-receptor complex with a 1∶2 stoichiometry. Previously we used our transient-complex theory to calculate the rate constant of the initial cytokine-receptor binding to form a 1∶1 complex. Here we computed the binding pathway leading to the 1∶2 activation complex. Three cytokine systems (growth hormone, erythropoietin, and prolactin) were studied, and the focus was on the binding of the extracellular domain of the second receptor molecule after forming the 1∶1 complex. According to the transient-complex theory, translational and rotation diffusion of the binding entities bring them together to form a transient complex, which has near-native relative separation and orientation but not the short-range specific native interactions. Subsequently conformational rearrangement leads to the formation of the native complex. We found that the changes in relative orientations between the two receptor molecules from the transient complex to the 1∶2 native complex are similar for the three cytokine-receptor systems. We thus propose a common model for receptor activation by class I cytokines, involving combined scissor-like rotation and self-rotation of the two receptor molecules. Both types of rotations seem essential: the scissor-like rotation separates the intracellular domains of the two receptor molecules to make room for the associated Janus kinase molecules, while the self-rotation allows them to orient properly for transphosphorylation. This activation model explains a host of experimental observations. The transient-complex based approach presented here may provide a strategy for designing antagonists and prove useful for elucidating activation mechanisms of other receptors

    Risk-Targeted Selection of Agricultural Holdings for Post-Epidemic Surveillance: Estimation of Efficiency Gains

    Get PDF
    Current post-epidemic sero-surveillance uses random selection of animal holdings. A better strategy may be to estimate the benefits gained by sampling each farm and use this to target selection. In this study we estimate the probability of undiscovered infection for sheep farms in Devon after the 2001 foot-and-mouth disease outbreak using the combination of a previously published model of daily infection risk and a simple model of probability of discovery of infection during the outbreak. This allows comparison of the system sensitivity (ability to detect infection in the area) of arbitrary, random sampling compared to risk-targeted selection across a full range of sampling budgets. We show that it is possible to achieve 95% system sensitivity by sampling, on average, 945 farms with random sampling and 184 farms with risk-targeted sampling. We also examine the effect of ordering samples by risk to expedite return to a disease-free status. Risk ordering the sampling process results in detection of positive farms, if present, 15.6 days sooner than with randomly ordered sampling, assuming 50 farms are tested per day

    Insula-specific responses induced by dental pain: a proton magnetic resonance spectroscopy study

    Full text link
    OBJECTIVES: To evaluate whether induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex after stimulation of the right maxillary canine and to examine whether these metabolic changes and the subjective pain intensity perception correlate. METHODS: Ten male volunteers were included in the pain group and compared with a control group of 10 other healthy volunteers. The pain group received a total of 87-92 electrically induced pain stimuli over 15 min to the right maxillary canine tooth. Contemporaneously, they evaluated the subjective pain intensity of every stimulus using an analogue scale. Neurotransmitter changes within the left insular cortex were evaluated by MR spectroscopy. RESULTS: Significant metabolic changes in glutamine (+55.1%), glutamine/glutamate (+16.4%) and myo-inositol (-9.7%) were documented during pain stimulation. Furthermore, there was a significant negative correlation between the subjective pain intensity perception and the metabolic levels of Glx, Gln, glutamate and N-acetyl aspartate. CONCLUSION: The insular cortex is a metabolically active region in the processing of acute dental pain. Induced dental pain leads to quantitative changes in brain metabolites within the left insular cortex resulting in significant alterations in metabolites. Negative correlation between subjective pain intensity rating and specific metabolites could be observed
    corecore