457 research outputs found

    A Hydrologic Model for Minnesota Peatlands

    Get PDF
    ABSTRACT-The Peatland Hydrologic Impact Model (PHIM) is a continuous simulation computer model developed over a twelve-year period to aid hydrologists in understanding the hydrologic functions of peatlands and upland-peatland watersheds. An initial conceptual model defined the research needed to create the working m?del. The re~e_arch has become an iterative process of model design, field work, model refinement, ~ode! test1?g, an~ add1t1?nal field work. The model is as physically-based as possible while relying on data mput that 1s readily available to the natural resources community. It simulates streamflow response of peatlands, upland-peatland systems, mined peatlands, and a combination of these watershed units

    Farm and Forest Fair Educates Fifth Graders about Natural Resource Issues

    Get PDF
    The Farm and Forest Fair educational program was developed to provide an objective view of the importance and impact of natural resource industries and promote an understanding of the issues regarding natural resource use. The targeted audience is fifth grade youth, teachers, and parents. Participants rotate through 10 stations in 9-minute intervals. Stations are staffed by agriculture- or forest-based industry personnel who demonstrate their area of natural resource involvement utilizing visual aids and hands-on learning techniques. Teachers, presenters, and youth are evaluated each year. Student pre- and post-test results indicate knowledge level increases of 21%

    The benthic community of the eastern US continental shelf: A literature synopsis of benthic faunal resources

    Get PDF
    The existing scientific literature on offshore benthic assemblages (OBA) residing along the US East and Gulf of Mexico continental shelf was reviewed. Identification was made of any associations between the dominant OBA and particular sediment types and/or bathymetry. Of special interest was the evaluation of reported effects of sand dredge/mining activities on the dominant OBA and recognition of data deficiencies. One hundred and twenty-two references were selected and classified as to type of study with pertinent results extracted. Polychaetes were predominantly cited as the principal infaunal taxa present in studies from both the Gulf of Mexico and US Atlantic coast. Specifically, Prionospio cristata, Nephtys incisa, N. picta, and Spiophanes bombyx were consistently identified as a common part of the benthic community structure. Surveys from the East Coast indicated a greater diversity of dominant taxa not reported for the Gulf of Mexico than vice-versa. Robust animal–sediment or animal–depth relationships were not readily available. From the few studies available, it appears that general ‘‘recovery’’ from anthropogenic disturbance by benthic assemblages on the continental shelf occurs within three months to 2.5 years. Presently, it is difficult to draw conclusions about approximate benthic faunal recovery times following anthropogenic activities such as sand mining and/or disposal operations because of the paucity of studies

    Association of Blood Biomarkers With Acute Sport-Related Concussion in Collegiate Athletes: Findings From the NCAA and Department of Defense CARE Consortium

    Get PDF
    Importance: There is potential scientific and clinical value in validation of objective biomarkers for sport-related concussion (SRC). Objective: To investigate the association of acute-phase blood biomarker levels with SRC in collegiate athletes. Design, Setting, and Participants: This multicenter, prospective, case-control study was conducted by the National Collegiate Athletic Association (NCAA) and the US Department of Defense Concussion Assessment, Research, and Education (CARE) Consortium from February 20, 2015, to May 31, 2018, at 6 CARE Advanced Research Core sites. A total of 504 collegiate athletes with concussion, contact sport control athletes, and non-contact sport control athletes completed clinical testing and blood collection at preseason baseline, the acute postinjury period, 24 to 48 hours after injury, the point of reporting being asymptomatic, and 7 days after return to play. Data analysis was conducted from March 1 to November 30, 2019. Main Outcomes and Measures: Glial fibrillary acidic protein (GFAP), ubiquitin C-terminal hydrolase-L1 (UCH-L1), neurofilament light chain, and tau were quantified using the Quanterix Simoa multiplex assay. Clinical outcome measures included the Sport Concussion Assessment Tool-Third Edition (SCAT-3) symptom evaluation, Standardized Assessment of Concussion, Balance Error Scoring System, and Brief Symptom Inventory 18. Results: A total of 264 athletes with concussion (mean [SD] age, 19.08 [1.24] years; 211 [79.9%] male), 138 contact sport controls (mean [SD] age, 19.03 [1.27] years; 107 [77.5%] male), and 102 non-contact sport controls (mean [SD] age, 19.39 [1.25] years; 82 [80.4%] male) were included in the study. Athletes with concussion had significant elevation in GFAP (mean difference, 0.430 pg/mL; 95% CI, 0.339-0.521 pg/mL; P < .001), UCH-L1 (mean difference, 0.449 pg/mL; 95% CI, 0.167-0.732 pg/mL; P < .001), and tau levels (mean difference, 0.221 pg/mL; 95% CI, 0.046-0.396 pg/mL; P = .004) at the acute postinjury time point compared with preseason baseline. Longitudinally, a significant interaction (group × visit) was found for GFAP (F7,1507.36 = 16.18, P < .001), UCH-L1 (F7,1153.09 = 5.71, P < .001), and tau (F7,1480.55 = 6.81, P < .001); the interaction for neurofilament light chain was not significant (F7,1506.90 = 1.33, P = .23). The area under the curve for the combination of GFAP and UCH-L1 in differentiating athletes with concussion from contact sport controls at the acute postinjury period was 0.71 (95% CI, 0.64-0.78; P < .001); the acute postinjury area under the curve for all 4 biomarkers combined was 0.72 (95% CI, 0.65-0.79; P < .001). Beyond SCAT-3 symptom score, GFAP at the acute postinjury time point was associated with the classification of athletes with concussion from contact controls (β = 12.298; 95% CI, 2.776-54.481; P = .001) and non-contact sport controls (β = 5.438; 95% CI, 1.676-17.645; P = .005). Athletes with concussion with loss of consciousness or posttraumatic amnesia had significantly higher levels of GFAP than athletes with concussion with neither loss of consciousness nor posttraumatic amnesia at the acute postinjury time point (mean difference, 0.583 pg/mL; 95% CI, 0.369-0.797 pg/mL; P < .001). Conclusions and Relevance: The results suggest that blood biomarkers can be used as research tools to inform the underlying pathophysiological mechanism of concussion and provide additional support for future studies to optimize and validate biomarkers for potential clinical use in SRC

    Quantum state preparation and macroscopic entanglement in gravitational-wave detectors

    Full text link
    Long-baseline laser-interferometer gravitational-wave detectors are operating at a factor of 10 (in amplitude) above the standard quantum limit (SQL) within a broad frequency band. Such a low classical noise budget has already allowed the creation of a controlled 2.7 kg macroscopic oscillator with an effective eigenfrequency of 150 Hz and an occupation number of 200. This result, along with the prospect for further improvements, heralds the new possibility of experimentally probing macroscopic quantum mechanics (MQM) - quantum mechanical behavior of objects in the realm of everyday experience - using gravitational-wave detectors. In this paper, we provide the mathematical foundation for the first step of a MQM experiment: the preparation of a macroscopic test mass into a nearly minimum-Heisenberg-limited Gaussian quantum state, which is possible if the interferometer's classical noise beats the SQL in a broad frequency band. Our formalism, based on Wiener filtering, allows a straightforward conversion from the classical noise budget of a laser interferometer, in terms of noise spectra, into the strategy for quantum state preparation, and the quality of the prepared state. Using this formalism, we consider how Gaussian entanglement can be built among two macroscopic test masses, and the performance of the planned Advanced LIGO interferometers in quantum-state preparation

    Geographic Variations in Retention in Care among HIV-Infected Adults in the United States

    Get PDF
    ObjectiveTo understand geographic variations in clinical retention, a central component of the HIV care continuum and key to improving individual- and population-level HIV outcomes.DesignWe evaluated retention by US region in a retrospective observational study.MethodsAdults receiving care from 2000–2010 in 12 clinical cohorts of the North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) contributed data. Individuals were assigned to Centers for Disease Control and Prevention (CDC)-defined regions by residential data (10 cohorts) and clinic location as proxy (2 cohorts). Retention was ≥2 primary HIV outpatient visits within a calendar year, >90 days apart. Trends and regional differences were analyzed using modified Poisson regression with clustering, adjusting for time in care, age, sex, race/ethnicity, and HIV risk, and stratified by baseline CD4+ count.ResultsAmong 78,993 adults with 444,212 person-years of follow-up, median time in care was 7 years (Interquartile Range: 4–9). Retention increased from 2000 to 2010: from 73% (5,000/6,875) to 85% (7,189/8,462) in the Northeast, 75% (1,778/2,356) to 87% (1,630/1,880) in the Midwest, 68% (8,451/12,417) to 80% (9,892/12,304) in the South, and 68% (5,147/7,520) to 72% (6,401/8,895) in the West. In adjusted analyses, retention improved over time in all regions (p<0.01, trend), although the average percent retained lagged in the West and South vs. the Northeast (p<0.01).ConclusionsIn our population, retention improved, though regional differences persisted even after adjusting for demographic and HIV risk factors. These data demonstrate regional differences in the US which may affect patient care, despite national care recommendations

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    • …
    corecore