1,475 research outputs found

    Infectious Morbidity After Radical Vulvectomy

    Get PDF
    Objective: This retrospective investigation describes the infectious morbidity of patients following radical vulvectomy with or without inguinal lymph node dissection

    The person, interactions and environment programme to improve care of people with dementia in hospital: a multisite study

    Get PDF
    Background: Improving care of people with dementia on acute hospital wards is a policy priority. Person-centred care is a marker of care quality; delivering such care is a goal for service improvement. Objectives: PIE (Person: Interaction; Environment) comprises an observation tool and systematic approach to implement and embed a person-centred approach in routine care for hospitalised patients with dementia. The study aims were to: evaluate PIE as a method to improve the care of older people with dementia on acute hospital wards; and develop insight into what person-centred care might look like in practice in this setting. Methods: We performed a longitudinal comparative case study design in ten purposively selected wards in five Trusts in three English regions; alongside an embedded process evaluation. Data was collected from multiple sources: staff, patients, relatives, organisational aggregate information and documents. Mixed methods were employed: ethnographic observation; interviews and questionnaires; patient case studies (patient observation and conversations ‘in the moment’, interviews with relatives and case records), patient and ward aggregate data. Data was synthesised to create individual case studies of PIE implementation and outcomes in context of ward structure, organisation, patient profile and process of care delivery. Cross case comparison facilitated a descriptive and explanatory account of PIE implementation in context, the pattern of variation, what shaped it and the consequences flowing from it. Quantitative data was analysed using simple descriptive statistics. Qualitative data analysis employed grounded theory methods. Results: The study furthered understanding of dimensions of care quality for older people with dementia on acute hospital wards and the environmental, organisational and cultural factors that shaped delivery. Only two wards fully implemented PIE, sustaining and embedding change over 18 months. The remaining wards either did not install PIE (‘non-implementers’); or were ‘partial implementers’. The interaction between micro-level contextual factors (aspects of leadership (drivers, facilitators, team, networks), fit with strategic initiatives and salience with valued goals) and miso and macro level organisational factors, were the main barriers to PIE adoption. Where implemented, evidence suggests that the programme directly affected improvement in ward practice with positive impact on the experience of patients and caregivers, although the heterogeneity of need and severity of impairment meant that some of the more visible changes did not affect everyone equally. Limitations: Although PIE has potential to improve the care of people with dementia when implemented, findings are indicative only: data on clinical outcomes was not systematically collected; and PIE was not adopted on most study wards. Research implications: Further research is required to identify more precisely the skill-mix and resources necessary to provide person-focused care to hospitalised people with dementia, across the spectrum of need, including those with moderate and severe impairment. Implementing innovations to change practices in complex organisations requires more in-depth understanding of contextual factors that impact the capacity of organisations to absorb and embed new practices

    Melt diffusion-moderated crystal growth and its effect on euhedral crystal shapes

    Get PDF
    Crystal growth is often described as either interface-controlled or diffusion-controlled. Here, we study crystal growth in an intermediate scenario where reaction rates at the crystal-melt interface are similar to the rates of diffusive transport of ions through the melt to the advancing crystal surface. To this end, we experimentally investigated euhedral plagioclase crystal shapes in dry mafic (basaltic) and hydrous silicic (haplodacitic) melts. Aspect ratios and inferred relative growth rates of the 3D short (S) and intermediate (I) crystal dimensions vary significantly between mafic and silicic melts, with δS:δI = 1:6 – 1:20 in basalt and 1:2.5 – 1:8 in hydrous haplodacite. The lower aspect ratios of plagioclase grown in the silicic melt coincide with 10-100x lower melt diffusion rates than in the mafic melt. Using an anisotropic growth model, we show that such differences in melt diffusivity can explain the discrepancy in plagioclase aspect ratios: if interface reaction and melt diffusion rates are of similar magnitude, then the growth of a crystal facet with high interfacial reaction rates may be limited by melt diffusion while another facet of the same crystal with lower interfacial reaction rates may grow uninhibited by melt diffusivity. This selective control of melt diffusion on crystal growth rates results in progressively more equant crystal shapes as diffusivity decreases, consistent with our experimental observations. Importantly, crystals formed in this diffusion-moderated, intermediate growth regime may not show any classical diffusion-controlled growth features. The proposed model was developed for plagioclase microlites, but should be generalisable to all anisotropic microlite growth in volcanic rocks

    Large Scale Flame Spread Environmental Characterization Testing

    Get PDF
    Under the Advanced Exploration Systems (AES) Spacecraft Fire Safety Demonstration Project (SFSDP), as a risk mitigation activity in support of the development of a large-scale fire demonstration experiment in microgravity, flame-spread tests were conducted in normal gravity on thin, cellulose-based fuels in a sealed chamber. The primary objective of the tests was to measure pressure rise in a chamber as sample material, burning direction (upward/downward), total heat release, heat release rate, and heat loss mechanisms were varied between tests. A Design of Experiments (DOE) method was imposed to produce an array of tests from a fixed set of constraints and a coupled response model was developed. Supplementary tests were run without experimental design to additionally vary select parameters such as initial chamber pressure. The starting chamber pressure for each test was set below atmospheric to prevent chamber overpressure. Bottom ignition, or upward propagating burns, produced rapid acceleratory turbulent flame spread. Pressure rise in the chamber increases as the amount of fuel burned increases mainly because of the larger amount of heat generation and, to a much smaller extent, due to the increase in gaseous number of moles. Top ignition, or downward propagating burns, produced a steady flame spread with a very small flat flame across the burning edge. Steady-state pressure is achieved during downward flame spread as the pressure rises and plateaus. This indicates that the heat generation by the flame matches the heat loss to surroundings during the longer, slower downward burns. One heat loss mechanism included mounting a heat exchanger directly above the burning sample in the path of the plume to act as a heat sink and more efficiently dissipate the heat due to the combustion event. This proved an effective means for chamber overpressure mitigation for those tests producing the most total heat release and thusly was determined to be a feasible mitigation strategy to incorporate into the microgravity experiment

    A Comparative Study of the Spatial Distribution of Schistosomiasis in Mali in 1984–1989 and 2004–2006

    Get PDF
    Geostatistical maps are increasingly being used to plan neglected tropical disease control programmes. We investigated the spatial distribution of schistosomiasis in Mali prior to implementation of national donor-funded mass chemotherapy programmes using data from 1984–1989 and 2004–2006. The 2004–2006 dataset was collected after 10 years of schistosomiasis control followed by 12 years of no control. We found that national prevalence of Schistosoma haematobium and S. mansoni was not significantly different in 2004–2006 compared to 1984–1989 and that the spatial distribution of both infections was similar in both time periods, to the extent that models built on data from one time period could accurately predict the spatial distribution of prevalence of infection in the other time period. This has two main implications: that historic data can be used, in the first instance, to plan contemporary control programmes due to the stability of the spatial distribution of schistosomiasis; and that a decade of donor-funded mass distribution of praziquantel has had no discernable impact on the burden of schistosomiasis in subsequent generations of Malians, probably due to rapid reinfection

    A validated numerical model for the growth and resorption of bubbles in magma

    Get PDF
    The rate and timing of bubble growth in magma is an important control on eruption style, determining whether or not magma fragments to produce an explosive eruption. Bubbles nucleate, grow, shrink, and de-nucleate in magma in response to changes in pressure and temperature, and these changes may be recorded in the spatial distribution and speciation of water 'frozen into' the glass in eruptive products. Accurate modelling of growth and resorption is therefore essential both for forward modelling of eruptive processes, and for inverse modelling to reconstruct pre-eruptive history. We present the first experimentally-validated numerical model for bubble growth and resorption in magma. The model includes the kinetics of speciation, allows for arbitrary temperature and pressure pathways, and accounts for the impact of spatial variations in water content on diffusivity and viscosity. We validate the model against three sets of data. (1) Continuous vesicularity-time data collected using optical dilatometry and in-situ synchrotron-source x-ray tomography of natural and synthetic magma during thermally-induced vesiculation and resorption at magmatic temperatures and ambient pressure. This represents approximately isobaric bubble growth and resorption under disequilibrium conditions. (2) Final vesicularity data from decompression experiments at magmatic temperatures and pressures. This represents isothermal, decompression-driven bubble growth from equilibrium to strongly disequilibrium conditions. (3) Speciation data from diffusion-couple experiments on synthetic haplogranites at magmatic temperatures and pressures. The numerical model closely reproduces all experimental data, providing validation against equilibrium and disequilibrium bubble growth/resorption and speciation scenarios. The validated model can be used to predict the growth and resorption of bubbles, and associated changes in magma properties, for arbitrary eruption pathways. It can also be used to reconstruct pressure-temperature-time pathways from textures and volatile contents of eruptive products. This will open up new ways of accessing the dynamics of magma ascent and eruption in unobserved volcanic eruptions

    Supranormal Expiratory Airflow after Bilateral Lung Transplantation is Associated with Improved Survival

    Get PDF
    RATIONALE: flow volume loops (FVL) in some bilateral lung transplant (BLT) and heart-lung transplant (HLT) patients suggest variable extrathoracic obstruction in the absence of identifiable causes. These FVLs usually have supranormal expiratory and normal inspiratory flow rates (SUPRA pattern). OBJECTIVES: characterize the relationship of the SUPRA pattern to predicted donor and recipient lung volumes, airway size, and survival. METHODS: we performed a retrospective review of adult BLT/HLT patients. We defined the SUPRA FVL pattern as: (1) mid-vital capacity expiratory to inspiratory flow ratio (Ve50:Vi50) \u3e 1.0, (2) absence of identifiable causes of extrathoracic obstruction, and (3) Ve50/FVC ≥ 1.5 s(-1). We calculated predicted total lung capacity (pTLC) ratio by dividing the donor pTLC by the recipient pTLC. We measured airway luminal areas on thoracic computer tomographic scans. We compared survival in patients with and without the SUPRA pattern. MEASUREMENTS AND MAIN RESULTS: the SUPRA FVL pattern occurred in 56% of the 89 patients who qualified for the analysis. The pTLC ratio of SUPRA and non-SUPRA patients was 1.11 and 0.99, respectively (P = 0.004). A higher pTLC ratio was correlated with increased probability of the SUPRA pattern (P = 0.0072). Airway luminal areas were larger in SUPRA patients (P = 0.009). Survival was better in the SUPRA cohort (P = 0.009). CONCLUSIONS: the SUPRA FVL pattern was frequent in BLT/HLT patients. High expiratory flows in SUPRA patients could result from increased lung elastic recoil or reduced airway resistance, both of which could be caused by the pTLC mismatch. Improved survival in the SUPRA cohort suggests potential therapeutic approaches to improve outcomes in BLT/HLT patients

    Sound modes in hot nuclear matter

    Get PDF
    The propagation of the isoscalar and isovector sound modes in a hot nuclear matter is considered. The approach is based on the collisional kinetic theory and takes into account the temperature and memory effects. It is shown that the sound velocity and the attenuation coefficient are significantly influenced by the Fermi surface distortion (FSD). The corresponding influence is much stronger for the isoscalar mode than for the isovector one. The memory effects cause a non-monotonous behavior of the attenuation coefficient as a function of the relaxation time leading to a zero-to-first sound transition with increasing temperature. The mixing of both the isoscalar and the isovector sound modes in an asymmetric nuclear matter is evaluated. The condition for the bulk instability and the instability growth rate in the presence of the memory effects is studied. It is shown that both the FSD and the relaxation processes lead to a shift of the maximum of the instability growth rate to the longer wave length region.Comment: 15 pages, 4 figures, submitted to Phys. Rev.

    Evolution of defence portfolios in exploiter-victim systems

    Get PDF
    Some organisms maintain a battery of defensive strategies against their exploiters (predators, parasites or parasitoids), while others fail to employ a defence that seems obvious. In this paper, we shall investigate the circumstances under which defence strategies might be expected to evolve. Brood parasites and their hosts provide our main motivation, and we shall discuss why the reed warbler Acrocephalus scirpaceus has evolved an egg-rejection but not a chick-rejection strategy as a defence against the common (Eurasian) cuckoo Cuculus canorus, while the superb fairy-wren Malurus cyaneus has evolved a chick-rejection but not an egg-rejection strategy as a defence against Horsfield's bronze-cuckoo Chrysococcyx basalis. We suggest that the answers lie in strategy-blocking, where one strategy (the blocking strategy) prevents the appearance of another (the blocked strategy) that would be adaptive in its absence. This may be common in exploiter-victim systems. © 2006 Springer Science+Business Media, Inc
    • …
    corecore